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ABSTRACT

In the past the lateral wave has been investigated for the cas= of 2
sharply bounded transition layer and a layer with a linear veloc<ity variation,
The interpretation of the iateral wave given in these instances cannot be extend-
ed to an arbitrary smooth layer, and in many cases, the exact nature of the
lateral wave contribution becomes unclear. It is our purpose to clarify these
matters and to present the characteristics of lateral wave propagation on a
layer of arbitrary variation. The mcdels employed can simulate an inhomoge-
neous plasma having a number density profile, nf{z), which varies continuously
between two homogeneous half spaces. An integral representation for the
scattered field in the optically denser half space is found and evaluated
asymptotically in the high frequency limit. This 2eymptotic evaluation is car-
ried out in two parameter ranges: first, whe: the layer is thick compared with
wavelength; and second, when the layer thickness is arbitrary but the observa-

tion point's distance along the interface is large ccmpaired with layer thickness,

When the layer thickness is large compared with wavelength, the asymp-
totic analysis of the scattered field shows that the interpretation of the lateral
wave depends markedly upon the gradient of n(z) at the junction with the optically
rarer homogeneous half space. {tis found that when a finite gradient of n(z)
exists, the conventional interpretation of the lateral wave contribution is correct;
however, the lateral wave mechanism is different in the case of a zero gradient,
For observation points situated at a large distance along a layer of arbitrary
thickness, the asymptotic expression for the lateral wave contribution has an
amplitude dependence on distance identical with that for the lateral wave on an
abrupt interface. In addition, the lateral wave expression reduces to the thick
layer result for large layer thickness and it reduces to the abrupt interface

result for thin layer thickness,
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INTRODUCTION

This report is a study of the fields reflected from diffuse plasma
interfaces with particular emphasis on lateral wave excitation and guid-
ing. It was motivated to a large extent by the general lack of knowledge
concerning lateral wave behavior on diffuse transitions. From an exam-

(1)

ination of the literature it became apparent that Nakamura' ' was the only
investigator to treat lateral waves excited on a diffuse transition and, in .
his case, only a linear velocity profile was considered. The diffraction
effect in question is relevan: for sucn applications as the scattering of
waves by inhemogeneous dielectric or plasma ducts and the radiation
from antennae in the presence of ionospheric irregularities. In the latter
cage, the presence of a magnetic field may introduce additional compli-
cations ; however, the results obtained here for the isotropic problem

should provide a basis for future study of lateral wave effects when a

magaetic field is present.

The transition layers to be considered have a monotonically
stratified number density profile, n{z), which varies continuously
between two homogeneous half spaces. The width or average width of
these layers is proportional to the parameter L; as L becomes small
compared with wavelength, the transition layers tend toward an abrupt
transition. The equivalent dielectric constant for the medium is given by

2 2 2
a(z) = l-(mp/m) , wp = n(z) e /mi:0 ,
and is representative of a cold electron plasma with a background of
positively charged immobile particles. In the above formulae w is the
applied frequency, wp is the plasma frequency, e and m are the charge
and mass of an electron, respectively, and €, is the free space permit-
tivity. The field incident upon the layer is produced by an electric line

current source placed parallel to the transition in the optically denser

half space.




Before proceecing, a review of the past research concerning
reflected fields from stratified transition layers will be useful. The
ma or portion of this research can be divided into two sections. These
are : first, the formulation and investigation of the reflection coefficients
from transition layers ; second, the investigation of the reflected fields
due to a point source located above these layers. The general problem of
relating the dielectric profile of the layer to its reflection coefficient has
been dealt with in a number of ways. Brekhovskil»'h(z) has derived two
representations for the reflection coefficient. One of these converges
rapidly when the layer is thin compared with wavelength, while the other
makes use of the geometrical-optics approximaiion and converges rapidly
when the layer is thick compared with wavelength. Since an explicit form .
of the reflection coefficient from an arbitrary layer is difficult to obtain ,
many investigators have studied particular profiles. Hartree(3) has
studied the linear layer, and Epstein(*) has devised a layer which is
completely continuous. He then studied the reflection properties from it.

(5)

Heading has recently generalized Epstein's results, and Wait(6) has

summarized the results of many other studies.

Although the above reflection coefficient formulae are useful,
they can only be employed to calculate the reflected field when a plane
wave is incident upon the layer. When the excitation is in the form of
a line source, a complete spectrum of plane waves is excited. The
.<flected field in this case can be represented as a continuous sum or
integral over the plane wave spectrum weighted by the appropriate ampli-
tude coefficients for each spectrél component. These amplitude coeffi-
cients will depend on the reflection coefficient of the layer and, as a
result, p.oevious investigations of reflection coefficient properties
become useful. It will be the main purpose of this report to approximate

asymptotically the integral representation for the reflected field in the

—
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high reequency limit. The asymptotic approximations will then be
interpreted geometrically as rays, and the results will be co npared
with the classical theory of geometrical-optics. This comparison will
clearly distinguish the diffracted rays from those which are predicted

solely by calssical geometrical optics.

As has been mentioned previously, all the layers considered
here depend on the width parameter L. As L decreases, the layer
approaches an abrupt transition. Since this is the case we should
expect all of our results to approach the field reflected from an abrupt
transition as koL becomes small (ko is the free space wavenumber) .
The requirement that koL be small implies that the field does not vary
appreciably over the layer's width. Lateral waves excited on abrupt
transitions were first observed and studied by seismologists. Jetfery”)
and Muskart(s) investigated the observed waves theoretically by evalu-
ating the transient field from a point source. Later Ott(g)and Brekhov-
skikh(w) investigated the time harmonic point source prcblems. Other
investigators who contributed to the understanding of laterai waves on

(1) (12)’ and Tamir and Felsen(B

abrupt interfaces were Kruger , Gerjouy
Tamir and Felsen considered the lateral wave excited by a line source
and they found that the lateral wave had essentially the same behavior

as the lateral wave excited by a point source.

All of the above investigators found that the reflected field from
an abrupt interface consisted of two contributions : a reflected and a
lateral wave. In Fig.I the ray interpretation of both of these contribu-
tions is shown. We see that a ray, emitted from the source toward the
layer, is reflected from the interface at the angle of incidence and then
proceeds to the observation point. The ray contribution for a line source

H

excitation hag an amplitude dependence of O(ko- ) . The lateral wave,

—

)
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on the other hand, can be interpreted in terms of a ray that is emitted

from the source at the critical angle (Oc = g;in.l ./cl ) . This ray is )

refracted along the interface, and it then sheds energy into the reflected i

field. Its contribution to the reflected field for a line source excitation

is given by

11:0[1,l + LP + Lz]

ae

E,L ~ a
L 3R

(koLp)

where the constant C!.a is the excitation coefficient, and Ll . LP, LZ are

defined in Fig. I. We : “ould note that the wave has an algebraic decay

Pobe Tl

with distance along the interface. This decay results from the continual H
shedding of energy into the reflected field as the lateral ray progresses
along the interface. : §

LINE SOURCE

6(2)4%1

t——— =
v
Lp

Fig. 1
Reflected Field From an Abrupt Interface
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An examiration of the two contributions to the reflected field chows
that the lateral wave contribution is smaller by a factor of k;l than the
reflected wave contribution ; nevertheless, in many physically meaningful
situaticns, the lateral wave effect is of importance. For instance, when
the transient field is observed at points iocated a large number of wave-
lengths along the interface, the lateral wave contribution is seen as a
first arrival. For this reason it is sometimes known as a head wave. The
lateral wave also becomes important in the time harmonic case when the
medium containing the source has a slight amount of loss. The wave spends
most of its time in the lower, lossless medium and, as a result, becomes
the dominant effect for observation points located a large distance along
the interface. In our study of lateral waves we shall restrict ourselves to
time harmonic pfoblems ; however, the results can be related to transient

phenomena.

_ In an attempt to understand the nature of lateral waves excited on
transition layers, the reflected field from four profiles is investigated
here. These profiles are : linear, parabolic, Epstein and double exponen-
tial ; they are considered in Chapters 1 through 4, respectively. The
profiles have not been chosen at random, but instead are selected
because the wave functions for the transition can be related to well known
functions, and because each successive transition demonstrates an aspect
of lateral waves not shown by the previous profiles. Finally, in Chapter
5, the conclusions drawn from the first four chapters are extended to an
arbitrary layer when possible. The general method of investigation is:
first, to formulate the integral representation for the reflected field ;
second, to evaluate the formal solution asymptotically for thick layers
(koL>>1): and third, to perform an asymptotic analysis for arbitrary
layer thickness. It has been found that in order to obtain an asymptotic
estimate of the reflected field for arbitrary layer thickness, it is

necessary to assume that the observation point is far from the source.
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CHAPTER 1.
THE LINEAR TRANSITION LAYER

1.1 Introduction

To begin our investigation of lateral waves we i study the
reflected field from a linear transition. This transition is composed of
a ramp dielectric variation betweer two homogeneous dielectric half spaces.
A source, placed in the denser half space, illuminates the transition and
causes a reflected field. This reflected field, which will be the main object
of our investigation, can be represented by a continuous swn or integral
over the reflection coefficient of the layer times the spectral components
excited by the source. The formulation and some of the properties of the
reflection coefficient have been investigated by Hartree . However, no
attempt has been made by him to investigate the source problem.

The integral representation for the reflected field is too complex to be
directly integrated and therefore it must be asymptotically approximated.
Two separatc asymptotic evaluations of the integral representation are
carried out: first, when the layer thickness, L, is large compared to wave-
length, i.e., k°L>>l. and second, when the observation point is far from
the source. In the first case we will obtain an asymptotic approximation to
the reflected field for all observation points for large koL. The asymptotic
approximation obtained by the second procedure, on the other hand, will be
valid for observation points which are far from the source compared to the
layer thickncss. In both evaluations of the reflected field, special ermiphasis
will be placed on lateral wave contributions and their interpretati-a.

Before proceeding with our investigation, some of the pertinent work
that has been done on similar problems should be mentioned. Orlov (14)
has found the ray trajectories which are reflected from a ramp dielectric
variation as shown in Fig. 1.1 when kozL>> 1. Here z is the width of
the* tien of the dielectric layer which supports propagating waves.

M .-gnt modification, these results can be used to give the structure

of the reflected ray trajectories for the linear layer when koL is large.




In the text we hive not used Orlov's results directly, but instead, have
rederived themn. An investigation of the lateral wave which is excited in a
medium with a linear velocity transition, has b..en considered by Nakamura
when the observation point is far from the source. Because of the anmalogous
behavior of acoustic and electromagnetic waves in media of the type being
considercd here, Nakamura's profile is equivalent to an inverse square
dielectric profile as shown in Fig. 1.2. # comparison between Nakamura's
lateral wave and our results will be made in an attempt to determine some
of the invariants of transition layers,

1.2 Formal Solution

An electric line current source of amplitude J is placed in a stratified
dielectric medium, €(z),at x=0,z=z" and parallel to the y axis, as is
shown in Fig. 1.3. Under these conditions the only field components
excited are E , Hx and Hz . The electric field obeys the inhomogeneous

wave equation( 15)

[v + ki ¢@)]E = - ou T o) blz-2') . (1.2.1)

We will assume that

J = 1/(iwu°) (1. 2. 2)

to simplify Eq.(l.2.1). The particular dielectric variation to be used is

given by
1 » 220
€(z) ={ Az/L+1 , -L<z<0 , A=1-el (1.2.3)
el » 2z<-L

and is shown in Fig. 1.2, The dielectric constant of the homogeneous region,
z>0, has been chosen to be unity, but if the dielectric corstant of this region

is not unity, Eq. (1. 2. 1) can be scaled to produce an equivalent dielectric




)a

-8~
tc(z)
i
A . o 4
Fig. 1.1
Orlov's Dielectric Variation
(o) LINEAR PROFILE ?G (2)
(b) INVERSE SQUARE
PROFILE 1
(b)
(a)
€,
-L >
Fig. 1.2

Comparison of Nakamura's and Linear Dielectric Variation
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constant which is unity.

Since the medium is uniform in x, we will represent Ey by means of
its Fourisr transform #(z,p), i.e.,

ko te ikopx
T e— ¢
E * 3 L (z.p) e dp. (1.2.4)

By using the above representation for Ey » Eq.(1.2.1) reduces to the one-
dimensional Green's function problem

2
d—z + K [C(z)-pzl #(z,p) = - 8(z-2') (1.2.5)
d: o

with the boundary conditions that #(z, p) must be an out-going wave as

z‘.*.o

In Appendix A thc formal solution for the Green's function ¥(z, p) is
obfained for an arbitrary layer variation in terms of a pair of independent
homogeneous solutions to the wave equation in the layer region. For a
layer with a linear variation such as the one under consideration here,
two independent solutions to the wave equation in the layer region are
A (g2 e*1m/3)where A, is the Airy functidn dnd €2 = (koL/A)?/3 (bz/L + 1-p%).
By using these independent solutions in Eq.(A-13) and in Eq. (A-7) we obtain
- an explicit expression for #(z,p). We then substitute & (z, p) into Eq. (1. 2. 4)
and obtain an integral representation for the field. It is

E =E . +E 1.2.6)
y yf yr (

Gl iko[pzlz-z'l +px]

Eyf = _e dp (1.2.7)
P2
4o = iko[pz(zoz')+px1
o d T e
E, & f dp (1.2.8)

P,




!»o

R e o O e

el s

11~
where %
T=- T (1.2.9)
b
with

gA;(gf & P)rg & A (g2 Ji“”)z ’A;(gf &™) rg dMop (2 e‘“’:’)t

re

el =iM/3 i5m/6 2 -i ’ i i i
daieg e Mg, oo ‘“’3)§ §Ai(gg iMByag s (g2 é“”)*

B = (1/b) p, . T=kL ,
(1.2.10)

=11a-
, pz[p

In the above expression for the reflection coefficient, T, the symbol
A;(z)= dAi(z)/dz . The branch cuts for the squzre root functions P, and
P, must be specified if the integrals in Eqgs. (1. 2. 7) and (1.2. 8) are to be
completely defined. This specification has been made in Fig. 1.4 where
the top sheet of a four sheeted Riemann surface is shown, To clarify the
designation of the top sheet, the sign of the real and imaginary parts of
P, and P, have been given in each quadrant. On any particular sheet of
this Riemann surface the integral is a single-valued function, however,
the integration path was chosen on the top sheet so that the integral would

converge properly as p~t®,

The expression for the field has been divided into two parts : Eyf and
Eyr as shown in Eq. (1.2, 6) . The motivation for this i« that Eyf is the
direct field from the source, that is, it is the field which would exist if

the entire medium were homogeneous while Eyr is the reflected field from

e,
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the layer. As expected, the cirect field integral, Eq.(l.2.7) integrates to

= A ) ne
Eyf- " Ho (ko x +(z-2') ) (1.2.11)
(1) . - . .
where Ho is the Hankel function of the first kind and zero order. We see
that Eyr can be interpreted as a cylindrical wave propagating away from
the source. The integral for the reflected field is too complicated to be

- integrated directly, so approximate techniques must be used.

Before proceeding with the approximate evaluation of the reflected
field, Eyr’ we will transform the integral from the p to the P, Plane.

The result is
. p.T ik (p.(z+2')+px]
i 1 o 2
E_=-— — e dp (1.2.12)
yr 4n £ PP, 1

where the square roots p= Jel P, and P, = A+_pf_ must again be defined

on & four sheeted Riemann surface. The upper two sheets of this surface are
shown in Figs. 1.5 and l. 6 along with the transformed integration path, C.
This transformation was motivated by the fact that the interesting contribu-

1
forming the integral to the p 1 plane, this branch point and the branch point

tions to Eyr come from the region near the branch point p=,/¢, . By trans-

at p=./EI are eliminatel. The disappearance of these two branch points is
accompanied by the appearance of two new branch points at P, - iJcl . For
(13)

a more detailed explanation of the transformation, corsult Tamir and Felsen

1.3 Evaluation of Reflected Field for koL»l

1.3.1. Geometrical Optics

Before attempting a rigorous asymptotic evaluation of the reflected

field when koL >>1, we shall investigate the rays which are emitted from
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the source when the layer is thick compared to wavelength. These rays
divide into three basic types: direct, transmitted and returning. The direct
rays are emitted from the source in the angular range -m/2<3<0 where 6

is the angle of emission of the ray from the source ang is shown in Fig. :.7.

The returniné and transmitted rays are emitted from the source in the angu-
lar ranges 0<9<9c and Gc <@<m/2 respectively, where the angle Gc is the
critical angle. This angle is defied s the angle whose corresponding ray

* (critical ray) has its turning point on the lower interface. The three basic
types of rays and the critical ray are shown in Fig, 1. 7.

An examination of this figure shows that the direct and transmitted rays
are of a n;uch simpler character than the reflected rays. The simplifying
feature of these ray types is that neighboring ray trajectories do not cross
one another, thus making the formation of caustics impossible. No such
statement can be made about the returning rays which shall now be exam-

ine8 in further detail.

The returning ray trajectories for x>x_ can be found by integrating

t
the ray equation

piclr B N (".3.1)

wbere

) p=8inf
¢ 2’ Je(r)-p

and
2
c(zt) =p .

The ray parameter p is the same as the integration variahle in Eq. (1. 2. 8).
We will not investigate the returning rays in the region before they turn
(x<xt) since the rays do not cross one another in this region. Upon inte-

grating Eq.(1.3.1), for x>xt we obtain

o

o
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DIRECT RAY

/GLANCING RAY
: >

REFLECTED RAY

CRITICAL RAY

TRANSMITTED Rf_w“

Fig. 1.7

Typical Ray Types for Linear Layer
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P, X

== 2 2

z = z ¢ = 4p2 , 2>0

T (L . E 2. a0 1.3.2

2p 2p, Py} - P, 22 )

where

z=A8z/L , x =Ax/L , Z' =a2'/L

2 <. . 2 . .
and €&, <p <1 . It is interesting to note thatp = €, is the critically

reflected ray. When the ray parameter pz< € the rays correspond to

transmitted rays and are no longer given by E?q. (1.3.2).

An inspection of Eq. (1. 3. 2) shows that it appears in a normalized form
in terms of barred coordinates, i.e., X, Z and Z’. As a function of these
new coordinates, the ray trajectories depend only on the source coordinates
¥’ ,however, the equations are still only valid for clﬁpz <1. Since we
would like to investigate the nature of the rays for arbitrary € i.e.,
<] we will assume 0§p2<l . This corresponds to a layer with €, =0,

1 1
H we are considering a layer where € is finite, then we just use the results

0<e

of the ¢, =0 case and eliminate those rays with 05p2< € -

The returning rays for x>x, Cross over one another in such a way that

they form a caustic. This caustic can be found by solving the constraint

equation,
- 3 —
0=x - ZPZP o zzo
(1.3.3)
2. z'x(2 2 ) 2pXx 22-'
0=x°+ 2P -P) _ £PX 2 , 250
3 . P, 4
P, P,

simultaneously with the ray equation (1. 3.2). The constraint equation can be
found by taking the partial derivative of the ray equation with respect to p.
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The elimination of the ray parameter p between Eqgs. (1. 3.2) and (1. 3. 3)
can be accomplished only when Z>0. The result is Quite complicated and
will not be preusented here.

As an alternative method of finding the equation of the caustic directly
we shall investigate its behavior near 6=0 and 6=1/2. With this information
and with the location of the focal points, we shall have a fair understanding

of the caustic's configuration.

From the ~ay and constraint equation we find that the point on the
caustic, corresponding to §=0, is located at x=0, z=-z'(1-Z'/4).
The slope of the caustic at this point is zero, i.e., dz/dx=0. As the
angle 6§ ~n/2, the parameter P, becomes small and the equations simplify

which allows us to obtain an asymptote to the caustic in this region. It is

'

5 , P, ~ 0, (1.3.4)

|n

Z = -

]|

To complete the description of the caustic, the second constraint equation
must be found. This equation, together with the ray and first constraint
equation, will give the location of the foci. The second constraint equation,

obtained by taking the partial derivative of Eq.(l.3.3) with respecttop, is

0=4p:-l , z20
l..
.2 (1.3.5)
0=%x- —=>—2P , zZgo0,

) 2 2
p,[Z'4p - 1)-2p,]

For 220, the location of the focus can be found explicitly ina simple form.
It is

¥=343/2 , z=+-3%2" p2=%- (1.3.6)

— - e ————
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From these equations we see that there is one focus when z'< 1/2 while
no foci exist for >0 when T'>1/2 . For T<0 we find that the foci occur

at ray parameters
(1.3.7)

Whent'>2/3, the ray parameters P, are complex and no foci occur.

* In the interval 1/2<Z’'<2/3, two real P, exist and two foci occur for T<0 .
When 0<Z'<1/2, two real P, still exist but one of the ray parameters leads
toaT>0.

To lmrue our investigation of the foci, we have found: first, for
large T, no foci exist; second, as Z' becomes less than 2/3, two foci
appear ir the layer; and third, as Z’' becomes less than 1/2, one of the
two foci in the layer region moves irto the homogeneous region. It is also
interesting to note that at z'=2/3, two foci are located at the same spot.

A check shows that the third constraint equation is zero at this point.

A graph of the caustic has been plotted for each of the three cases
given above. These graphs appear in Figs. 1.8, 1.9. and 1.10 along with
the locus of turning points and the critical ray, The portion of the caustic
near p=0 is not shown in these figures since 3 >0 . To alleviate this, we
have presented a sketch of the caustic for ¢, =0 and z'>2/3 in Fig. 1.11,
The behavior of the portion of the caustic, corresponding to rays with small

8, remains essentially the same whenz'<2/3 .

1.3.2 Asymptotic Evaluation

As mentioned in the previous section, the integral representation for the
reflected field, appearing in Eq. (1. 2. 8), is too complicated to be integrated
directly. To effect its evaluation we will expand the reflection coefficient in




-19-

(61 °= ..m.v 29AwT vouyT v Aq paurzo J di3sne)

8°'1 ‘Mg -
| .\.\.ﬂ'./

Ve [

AVY WOILIYD + —-— \ “
SLNIOd ONINYNL 40 SNJ0 ===~ \ |
118NV : \

SI'=,2 \ \

n.-.w \. ——
\

o4

ot

m+

-

T et




SJNIOd

(66 '3 ,2) I94A®T Z»aulT ® Aq pawIoJ d213sned

6t 3 g
T,
7
/|
| / /
AVY IVOILIY) ——e— : /
ONINYNL 40 SNJ0T ——— — V|
. 211SNVI ) /
0SS = .2
Gs'y

. 0o'e 3 4 (0} 4 - ge




-21-

(L'=,2)33ieT 1eaurT e Aq pawao,l dI3sne)

or'1 314
—9—
\.4/. —HS -
fi\
AVY TVOILIND — —-— j! \ i P
SLNIOd ONINY¥NL 40 SNJ0 —— — — . \ ./
o1LSNVI | 4
L = sW \ / Jml
G =13 i ’
| -
| T
S ——— : 1 . _ L _
=0 6 8 ] 9 S m




-zz-

| 2 3 4
S
~10
Fig. 1.11

Sketch of Caustic for e1=0 and 2'>2/3

a geometric series and then make use of asymptotic techniques to integrate
each term of the series individually, This will result in a representation for
the reflected field, Eyr » which can be interpreted in terms of geometrical-

optic ray contributions.

The reflection coefficient given by Eq. (1. 2.9) can be written as

I‘oa 1‘L (rob - I‘oc )

(1. 3.8)
oca 1- I‘L 1‘0

b
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where A (gZ iﬂ'/3) 5 g ei1'r/6A (gz in/3
By © (1.3.9)
I ¥ (§Z ™) . L A(§2 infe,
Al (g /3) e, 1517/6A.(g2 e-in/3)
I\ob =" 2 +inf3 i1/6 - 22+1ﬂ/3 (1.3.10)
Al(Be )-8 A(Se )
AL i) v, ot @2
B (1.3.11)
“oc Al (gl +1ﬂ/3) se, e1511/6A (gz +1n/3)
A (52 ™y 4 §leiﬂ/6A (gz RN
o= . — . (1.3.12)
L A (§ 1“/3) + gl elf’:t‘l"l’/6Ai(gl . 1Tl/3)

The denominator of the second term in Eq. (1. 3. 8) can be expanded in a

geometric series if |I‘LI‘

along the integration path C. An evaluation of rLrob shows that its magnitude
is less than one, except for the portion of the path Re P = 0, JA-<Impl<°° .
Along this portion of the path |I‘ I‘ |

. This condition must be met at all points

, however, we can show that a slight

deformation of the integration path C to the right of the Impl axis in this

region makes 'rLrobl <1 ., The use of this series expansion in the reflection

coefficient gives us

where

L =T (T _-T )rb

(1.3.13)

n+l

L (1.3.14)
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We now use the series expansion forT in Eq. (1. 2.8) and interchange the
intergration and summation signs. We obtain

(-]
E _=E + E E (1.3.15)
yr ro [, n
where
i plroa iko[pz(z-l'z') + px]
E -- o ‘[ e dp, (1.3.16)
& PP,
and
o i AL e
= - e dp, . (1.3.17)
n 4n L PP, |

The integrals Ero and En will now be evaluated by the method of steepest
descents when ko is large. Before doing this however, we will assume
k°L>>l 2nd replace roa and I‘n by their asymptotic approximations. These
approximations are obtained by using the asymptotic expansions for the Airy

function and its derivative. The expansion for Ai(z) is given by

1 -1/ -C T -
Ai(z)~-z—TTT-z /4e C,,Zo(-l)kckck , |argz|<n (1. 3. :8)

where

3/213

¢ = 2z , c=1,cl=5/7z

o

while A;(z) can be obtained by formally differentiating Eq. (1.3.18) . The
additional coefficients Ck can be found in Abramawitz(”). When the argz

is close to £ Eq. (1. 3.18) is no longer valid and another asymptotic
expansion including this sector of argz must be used (18) . The expressions

for roa and I‘n contain the Airy functions with four different arguments.
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The locus of possible p 1 values, when the argument is constrained to
bave an angle of 17, have been drawn in Fig. 1.12 for the four °iry
functions. This figure serves to make the region of validity of Eq. (1. 3.18)
in the P, plane clear. The curves shown in Fig.1.12 are the same on both
the top and on the second sheet of the Riemann surface since the Airy

functions are even functions of p.

~ The asymptotic approximations for roa. and I‘n on the integration path
between p, = Je_l' and p, = iJ/A are

A .
r o~ L i (1.3.19)
oa kK L 3
o pZ
and
Anrli‘“ i4(n+1)§g/3 +inm2
W7~ am (1.3.20)
(k L) p,

1
where An= (-l)nT (154 CI/Z)n . I we restrict P, to lie between the origin
andp, = isA , making sure that p, does not come too close to the origin,
then Eq. (1. 3.20) reduces to
. 3 .
A 14(n+1)§2/3 + i(n-2)1/6

r ~—2_— . (1.3.21)

n 3n
(koL) P,

while if we restrict p, to the real axis (0<Rep, <J€;) and again keeping
p, away from the origin, Eq. (1.3, 20) reduces to

A i4(n+l)(§: - g? )/3 +i (n-2)/6
2ntl 3n 3(ntl) °© )
(koL) P, P (1.3.22)

T
n
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Fig. 1.13 Fig. 1.14
Deformed Path for I (Top Sheet)

Deformed Path for Ir (Second Sheet)
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By using the asymptotic approximation for I‘o‘ in the integral Ero'
the saddle point equation can be determined by taking the derivative with
respect to P, of the argument of the exponential term in the integrand.
The result is

- top sheet

+ f
(=% %)=0 (1.3.23)
1Y p P
2 + second sheet .,

There are two relevant solutions to this equation on the top sheet which
are denoted by D and E in Fig. 1. 13; there are no relevant solutions on

the second sheet. The saddle point D can occur anywhere on the integra-
tion path between P, =Je—l andp, = iJ/A while the saddle point E is always
located at P, = 0. I we restrict the saddle point D to lie on the imaginary
axis and deform the integration path C into the decay regions, {Figs. 1.13
and 1. 14), the field Erois asymptotically approximated by the two saddle
point contributions D and E. The contribution of E is exponentially small
however, since the integrand is an odd function of P, integrated over a
symmetric interval. The contribution from D can be interpreted as a ray
reflected from the z =0 interface as shown in Fig.1.19. The asymptotic
order of contributions of D and E are shown in Table 1.1. If now we
restrict the saddle point D to the real axis, the saddle point E is not inter-
cepted when the integration path C is deformed and the total contribution
to the integral comes from D. The interpretation of D is as before. We
should mention at this point that the assumption has been made that no
isolated pole singularities exist between the original and deformed paths
which contribute to the asymptotic evaluation of Ero . This same assumption

will apply to the other path deformations which shall occur in this chapter.
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Type Asymptotic Order
-(n+1/2)
An 0(k° )
-(2n+3/2)
Bn O(ko )
-{n-17/6)
Cn O(ko )
-3/2
D C>(ko )
-ak
E Ooe 9),a>0
Table 1.1

Asymptotic Order of Geometrical

Optic Contributions

The asymriotic evaluation of the integral En can be treated in a

similar way to Ero . The asymptotic approximations for I‘n given in
Eqgs.(1.3.20), (1.3.21) and (1. 3. 22) are substituted ir. the integrand of

En and the saddle point equations are then obtained. They are:

4(n+l)p, L
g+z' = x 2
X —_—t ) = < < .
pl(pz ¥ p+ A ) 0, Rep =0, 0<Imp /Y (1.3.24)
) 4(n+l)(p, -p,) L
P, P (1. 3. 25)
and

) 3
P =C . koL|pl| <1 (1.3.26)
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where the upper sign in Eqs. (1. 3. 24) and (1. 3. 25) refers to the top
sheet and the lower sign to the bottom. Equation (1. 3. 26) is valid on
both sheets.

Upon obtaining the saddle point locations from the above equations,
we deform the contour C through these saddle points and into the decay
regions. Since the contribution due to the portion of the integral lying in
the decay region is exponentially small, the integral IEZn will be asymptotic-
ally equal to the sum of the saddle point contributions. The contributions
arising from saddle points obeying Eq. (1. 3. 24), (1.3.25) and (1. 3. 26) will
be known as type An , Bn and Cn contributions respectively. The subscript
n indicates the integral in which the saddle points occur. It can be shown
that no relevant saddle points occur on the second sheet for any n and there-

fore the deformned path will be the same as that shown in Fig. 1. 14,

At this point we shall focus our attention on the relevant saddle points
on the top sheet, their contributions to the reflected field and the geometrical
interpretation of these contributions. We shall first consider the integral
Eo since Eo contributes the dominant terms to the reflected field for koL

large and then, at a later time, we shall consider the integrals En' n=1,2,3,..

Saddle point contributions of type Ao will be considered first. A
comparison of Eq. (1. 3. 24) with the ray equation for returning rays (z>0),
Eq.(1.3.2), shows that the two are identical. This means that saddle *
point contributions in the interval Re P)" 0, 0< Il'np1 < .ﬁcorreapond' to
returning ray contributions. At this point we can use our knowledge of the
returning ray trajectories to find the location and number of saddle points
in the interval Re P o, 0<Imp1 <A . Before proceeding however, we
shall divide the portion of the x-z plane with z>0 in two parts separated by
the critical ray as shown in Fig. 1.19. To the right of the critical ray

(region 2) there is either one or there are three returning rays passing
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through an observation point. If the observation point is iocated inside

the cusp region there are three rays while outside, there is only one.

To the left of the critical ray (region 1) there are either two saddle points
in the interval Re P, =0, 0<Impl< JB or there are none. The two saddle
points occur when the cusp region lies to the left of the critical ray, and the
observation point is located inside the cusp region. The saadle points are
lhqwn for the four cases, considered above in Figs. 1.15 - 1,18, where
they are denoted by An(n=0) . The contributions to the reflected fis .d at
these saddle points are of O(RO- 1/2) as would be expected since they repre-
sent returning ray contributions.

Saddle point comtributions of type Bo will be considered next. An
examination of Eq. (1. 3. 25) shows that one saddle point exists in th:: interval
0<Re pl</e-; 0 Impl=0 when the observation point is in region 1 hile no
saddle points exist in the interval when the observation point is in r. gion 2.
The saddle point contributing to region 1 can be interpreted as a rav reflected
from the interface at z=-L . A ray of this type is shown in Fig. 1.19. Its
asymptotic contribution to the reflected field is of O(ko' 3’2) which is 1%
lower than the returning ray contribution. This is expected, howeve: since
the ray under consideration is reflected at an interface when the die:: ctric

profile has a discontinuous first derivative.

Finally, the saddle point contribution of type Co will be conside -d.
An examination of Eq. (1. 3.26) shows that only one saddle point exist: and
its location (pl= C) is independent of the location of the observation ¢ »int.
An analysis of the decay regions, the results of which are presented in
Fig. 1.15 - 1, 18,has shown that the saddle point is only intercepted when

the observation point is located in region 2.

We will now attempt to asymptotically evaluate Eo . The integral Eo

—

Ly
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Fig. 1.15 Fig. 1.16
Deformed Path for In(Region 1) Deformed Path for Iu (Region 1)

TOP SHEET
P, PLANE

Fig.1.17 Fig. 1.18
Defornmied Path for In (Region 2) Deformed Path for In (Region 2)
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in the vicinity of the origin does not appear to be a simple steepest
descent integral since F is a complicated function of k . The situation
can be clarified by maldng the change of variables § ('rIA) p; in the
integral. The portion of the integral in the vicinity of the origin, EL ,

becomes
E -~ 575 J‘ o e at (1.3.27)
4T 2
where

- aremPe L b=, - 0 PE

and C’ is the transformed path C in the vicinity of the origin. Now PL is no

longer a function of k but p and p, are. Because of the simpler dependence

of p and P, upon k , it becomes possible to show that the standard steepest
descent techniques ( ) can be applied to Eq. (1.3.27) . Upon the application
of these techniques we find

iko[JA'(z+z’) + ./e_lx +4/ALMBI+iMT/12
A e
E, ~ —= (1.3.28)

= (L + ‘gJe—lL/A/A')y2

where

Z/ e (1/3) ¢ 1/4 1/3

AL = 372 5/6 7/6 , Lp = x-~/€l7A (Z+Z ) (l. 3.29)
0

2(2m)

and I'(z) is the gamma function of argument z. This result can be inter-
preted as the contribution f{rom a ray which is excited by the critical ray
at the z= - L interface. This newly formed rav travels along the lower

interface for a distance Lp+4J€—l L/J/A and sheds energy into the upper region.
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A typical ray trajectory is shown in Fig. 1.19. The lateral wave exicted
on an abrupt transition has a similar ray interpretation and amplitude
dependence with distance along the interface. The two lateral waves,
however, have different excitation coefficients. The excitation coefficient,
AL » for a lateral wave on a thick linear transition, depends on k°'7/6 while
the excitation coefficient for a lateral wave on an abrupt transition has a

dependence of k°-3/2 5

Now we will not require n to be zero and we will investigate the asymp-
totic contributions to the integral l':‘.n . To do this we must locate the relevant
saddle points and then find their contributions to the reflected field. As men-~
tioned earlier, the general saddle point equations are given by Eqs. (1. 3. 24)
(1.3.25\ and (1.3.26) . By replacing (n+1) L by L in the first two of these

~ saddle point equations we see that the equations are the same as the n=0 case

with L replaced by L. Since the n=0 case was done for arbitrary L, the
location of saddle points of type A and B has already been investigated.
However, there is one basic change. The demarcation between region #1 and
region # 2 {s no longer the critical ray reflected from a layer of thickness L
but is rather the critical ray reflected from a layer of thickness of L. This
cirtical ray is shown for n=2 in Fig. 1.20. The third saddle point equation
given in Eq. (1. 3. 26) has one saddle point at | 2 0 for any n. From the
above argument we conclude that the basic structure of the deformed paths

are again given by Figs. 1.15 - 1,18 .

The method of steepest descents can then be used to evaluate the
asymptotic contributions at each saddle point. Those contributions of type
An correspond to returning rays reflected n times from the z =0 interface
while those of type Bn correspond to rays reflected n+1 times from the
interface atz=- L . The Cn are lateral wave contributions. These are

excited by the critical ray which is reflected n times frem the z = 0 interface.
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The ray trajectories for these contributions are shown in Fig. 1. 20 for

n=2 . The order of each type of contribution is given in Table 1. We see
from this table that as n increases, the order of the asymptotic contribution
decreases. This results from the fact that the order of a ray contribution is
reduced by 0(l/k°) each time the ray is reflected from the z=0 orz=-L
interface.

To summarize briefly we have found that the reflected field from a
gradual linear layer (koL >>1) can be decomposed into a geometric - optic
series. The dominant terms of this series in region # 2 are the returning
rays which are of O(k -1z
otk y

o
occurring on an abrupt transition except for a difference in its excitation

coefficient.

), and a lateral wave contribution which is of

) . This lateral wave has a great similarity to the lateral wave

1.4 Evaluation of Reflected Field for Large kL

In this section we shall explore the connection between the lateral wave
contribution observed on a thick linear transition (section 1.3) and the
lateral wave excited on an abrupt interface. The linear layer provides an
excellent opportunity to do this, since for small koL ,» the layer appears to
be an abrupt transition, while for large koL the layer thickness is large
compared with wavelength, It can be shown, in fact, that the reflected coe-
fficient, Eq. (1.2.9), reduces to the reflection coefficient for an abrupt

transition as koL-oO .

Our investigation of the lateral wave's character shall be carried out
by performing an asymptotic evaluation of the reflected field for observation
points which are far from the source compared with layer thickness. To be

more specific we shall assume that koLp >>1 and Lp>>L . This says that we
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shall consider those observation points which are a large number of

wavelengths and a large number of I2yer thicknesses to the right of the
reflected ray, x=J¢17A (s+2').

The integral representation for the reflected field is given by

plf iko[pz(z+z')+ px]

i
Er*" @ ,[ PP, ° dp, (1.4.1)
C
where A
Tz B
=- T (1.4.2)
.- t
with

1, o2 2 1, g2 2
’Ai(-gl) - 18, Ai(-gl)z ;Bi(-gl) - i§l Bi(-gl)i
A =

’ 1, pt o 2 1; pl, =~ 2
3 *Ai(-;z) Fi "ZAi(-gZ’i ,Bi(-gz) + i§z Bi(-ﬁz) z

The representation given in Eq. (1.4.1) is the same as that presented in
Eq. (1. 2. 12) except that a different form of the reflection coefficient has
been used. The alternate form of this reflection coefficient was obtained by
choosing !l(z) and !z(z) in Appendix A as Bi(-gz) and Ai(-ﬁz) respectively.
These two functions are independent of one another and thus satisfy the
requirement for choosing !l(.z) and Oz(z) . The Bi(-gz) not encountered
previously, is the Airy function of the second kind. The reason for using an
alternative form of reflection coefficient is that it will allow us to put our

*
results in a form which is more suitable for computation.

* The advantage of the original form of the reflection coefficient was that
it contained Airy functions whose asymptotic expansions were of a simpler
form in the vicinity of the integration path.

s mey:

gt e
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if we now use the assumption that koL«koLp then the reflection
coefficient in Eq. (1. 4. 1) is slowly varying compared to the exponential
in the integrand, and the standurd steepest descent techniques can be uced
to asymptotically evaluate the integral representation. The saddle points
are found by taking the derivative with respect to P of the argument of the
integfand's exponential and setting it equal to zero. The result is

z+z’ x, _ - top sheet '
P ( P, ¥ p) =L + second sheet , (1.4.3)

This {s the same saddle point equation encountered in the asymptotic
evaluation of E.,: The relevant saddle points whick occur on the top

sheet of the Riemann surface are located at

P, = o , P = i ../sz- (z+z')zo:1 (1. 4. 4)

where we have assumed that x>./¢ /8 (z+2') or Lp>° . The original
integration path is deformed through the two saddle points given above

and into the decay regions. We will assume that there are no singular-
ities of importance lying between the two paths. The decay regions and the

deformed path are shown in Figs. 1.13 and 1.14.

We see now that when k Lp is large, the reflected field is composed

of two contributi~ns. The first of these occurring at P = i ﬁ (z+z')z €

is a reflected ray from the interface at z=0. When 1<< k°L<< koLp this

reflected ray corresponds to a returning ray that has its turning point
close to the z =0 interface. When koL is small the coutribution is the same
as a reflected ray from an abrupt interface. The contribution from the

saddle point is of O(ko-llz) as would be expected.

The second contribution to the reflected field comes from the saddle

noint at P, " 0 and is the lateral wave contribution. This contribution was
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obtained by the application of steepest descernt methods and is given by

va iko[JA-(:+z')+JE;x] +1i $(g) +i3m/4
€ Afo) e

13
E. »~ —————— , 0=Wht)
S FY R
(1.4.5)
where .
2
dar
Afo) =~ ’Zg ; = -ZL_Z-—Z (1. 4. 6)
1 Pl'o n (D1+D2)
and ., D
V(o) = 2tan D— (1.4.7)
2
with
’ ’ ’ ’ 2
D, = B} (0)A! (-°) - AL(0)B! (-0°) (1.4.8)
and .
D, o [ B{(0) Ayf-o) - A1(0) B,-0%)] (1.4.9) |

In the above we have denoted the lateral wave contriubtion by EL as was :
done in the previous lection,Eq. (1.3.27) . The amplitude, A(o) and phase
¥(o) functions have been plotted by computer and are shown in Figs. 1.21
and 1,22. Those figures also show the approximate lateral wave amplitude
and phase when the layer is thick compared with wavelength.

The physical interpretation of the lateral wave contribution can best
be gotten from examination of small and large limits. When r is small or
when the layer appears to be abrupt, we find A(c)~1 and ¥(o)=0 . By using

these limits in Eq. (1. 4.5), we find that E_ reduces to the lateral wave

L
contribution on an abrupt interface. On the other hand, when 1<< k°L<< 1::‘:,Lp

then E, reduces to

L

S
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ik [JA(z+2) +./§x+ 4/LB) + 1mMN2
£ - AL e-o
L L 32
P

(1.4.10)

where AL is given by Eq. (1.3.29). When this result is compared with
Eq. (1. 3.28) and use is made of the fact that koL<<koLp , we find that the

“wo expressions are identical.

As was stated in the introduction, Nakamura has obtained a uniform
expression for the lateral wave excited on an inverse square dielectric
profile which is valid under the same conditons assumed in this section.

A comparison between our resultyEq. (1. 4.5),and Nakamura's shows that

a lateral wave is excited for all layer thicknesses in both cases and both
have amplitude dependences of LP.3/2 . However, the excitation coeffi-
cient as a function of layer thickness appears to depend on the detailed
behavior of the wave functions in each particular medium, and nothing in
general can be said. When the layer thickness becomes large compared
with wavelength, the excitation coefficient simplifies and both results have

a wavenumber dependence which is O(ko-7/6) .
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CHAPTER 2,

THE PARABOLIC TRANSITION LAYER

2.1 Introduction

In Chapter 1 a detailed study of the reflected field from a linear
transition layer was made. There, it was found that a lateral wave was
excited on the layer for all layer thicknesses. In this chapter, we will
continue our study of lateral waves by considering the reflected field from
a parabolic transition. Other parameters influencing the reflected field,
such as source location and orientation, will remain the same as in Chapter

1. The dielectric profile to be considered is given by

1 z>0
2, .2
¢(z) =(A(z+L) /L te -L<z<0 , A=1--cl (2.1.1)
cl z<-L

and is shown in Fig. 2.1 . The basic similarities between the parabolic
and linear transitions are their thickness L, height A and finite slope at
z=0 . Their fundamental difference, on the other hand, is the slope of the
profiles at z=- L . The linear layer's slope at that point is finite while the

parabolic profile has zero slope there.

Our investigation of the parabolic transition has been motivated by the
behavior of the critical ray trajectory when the layer is thick compared to
wavelengtli,. "J.[‘his critical ray, unlike the critical ray in a linear transition,
never becomes tangent to the lower interface but oniy approaches it asymptot-
ically as x~+® ., In the previous chapter the lateral wave contribution has
been interpreted as a wave excited at the point that the critical ray becomes
tangent to the lower interface. If this supposition is true for the parabolic
transition, no lateral wave will be excited when the parabolic transition

thickness is large compared to wavelength. In an attempt to clarify the above
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question we shall asymptotically approximate the formal solution first for
large koL and then for large koLp with Lp >>L. Here Lp is the same as

that defined in Chapter 1 . When k°L>>1 or the layer thickness is large
compared to wavelength, a knowledge of reflected ray trajectories will be
necessary to carry out an asymptotic evaluation of the integral representation.
These ray trajectories have been considered in some detail by Orlov(zo)

for z>0 ; his results will be used in the text .

2.2. Formal Solution

The integral representation for the field, due to a line source located
above a parabolic transition, is obtained in an analogous way to the integral
representation found in Chapter 1 . The only component of the electric field

which ig excited is Ey which obeys the inhomogeneous wave equation

[v2 + k:e(z)] E = - iuwu J8(x) 8(z-2) (2.2.1)

where €(z) is given by Eq.(2.1.1).

The application of Fourier integral techniques to the above equation
reduces it to a one-dimensional Green's function problem. The formal
solution to this Green's problem has been presented in Appendix A in
terms of two independent solutions to the wave equation in the layer
region. For the parabolic transition which is being considered in this
chapter, two independent solutions to the wave equation in the layer region
are E(-af , &) and its conjugate, E*(-af , &) . These two functions which

(

are defined by Abramowitz Zl)have an order -2, and an argument £ given by

.1=(¢/z./zr)*pl , §=[zkeJE/LJ*(z+L) , Tk L (2.2.2)
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In the above P is related to the}Fourier transform variable p as it was
in Chapter 1, i.e., pl=(€1 - pZ)_, . By using these independent solutions
in Eq. (A-13) and in Eq. (A-7) we canobtain an explicit expression for
the one-dimensional Green's function and, from this, an integral repres: -

tation for the field. The representation for EY is given by

E =E _+E (2.2.3)

where Eyf is given in Eq. (1. 2. 7) and represents the direct field from the

source in the region z>0 . The second term in Eq.(2.2.3), E . is given
by

I ik [p (z+z')+ px]
~ . i r T o "2
bvr S ‘im >, e ap (2.2.4)
where
T =- 8 /8 (2.2.5)
with
gE'(-ai’, 0)+ia1E(-ai’, O)z 3}:* (-ai, 0) + iaIE*(-a‘:‘ , 0)§
AE -
,E’(-af, c)tiaZE(-af, c)z gE*(-af, c)= iaZE*(-a':' , c)§
a, = (/2mip, L b= (0 L es@rf (2. 2. 6)

2
In the above expressions for A, the symbol E'(-a1 , ) = dE(-af , £)/dE .
The square roots P, are defined as in Chapter 1 by Fig. 1. 4. The integral
for the reflected fiezeld, Eq. (2.2.4) is transformed to the P, plane. The result

is given in Eq. (1. 2.12) where the integration path C and the square roots are

defined as in Chapter 1, Fig. 1.5 and 1.6 .
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2.3 Ewvaluation of Reflected Field for Large Layer Thichness (k°L>>l

2.3.1 Geometrical-Optics

Before performing the asymptotic evaluation of the reflected field for
k°L>>l we shall make use of the method of geometrical-optics to predict
the ray contributions to the reflected field. Then, in the next section, we
shall asymptotically evaluate the integral representation for the reflected
field and compare the two results. In this way we will see the limitation

on the theory of geometrical-opticse when applied to a parabolic layer.

The rays emitted from the source can be divided into three types:
direct, transmitted and returning. They are defined in the same manner as
in Chapter 1. There the reflected and transmitted ray types have been
separated by a critical ray. This is also the case here, however the critical

ray has a different behavior as is shown in Fig. 2.1.
The trajectory for this ray is obtained by integrating the ray equation

Z

- pdT___ (2.3.1)

?‘ i J;' Je(r)-p

with the appropriate value of p for the critical ray (p=:fe§) . The result is
x = Je/a [2'+Lin ()] (2.3.2)

where we see thatas z~-L , x=>,

The difference between the behavior of the critical ray in a linear
transition and its behavior in - parabolic transition can be understood better

by applying the reciprocity prinicple. Consider a ray that is progressing
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along the z = - L interface of a linear transition. * This ray will be

forced to turn away from the interface since it has a finite radius of
curvature, (de(z)/dz 2=-L #0). The situation is not the same for a

ray travelling along a parabolic interface. There de(z)/dz o i, 0

and the radius of curvature is infinite. In this case the ray continues to
propagate along the interface. Now, applying the principle of reciprocity
to the parabolic layer, we see that if a ray starting in the interface, cannot
escape then a ray outside the interface cannot become tangent to the inter-

face unless it has an infinite radius of curvature. The critical ray in the

parabolic layer only obtains an infinite radius of curvature as x -,

As in Chapter 1 we shall now focus our attention on the returning rays.
By substituting the parabolic dielectric variation into the ray equation for

returning rays, Eq.(l.3.1), and integrating it we obtain

ZEL -1 ﬁZA
(z'+2z)/p, + i cosh , z2>0

]
"

(2. 3.3)

Pz'/p2 + % cosh | JPL + *slgr cosh™ " _[A%(_z_*{_l_;} , z<0
1 1

where P, =i |pl' and el<p2<l . A typical ray is shown in Fig. 2.1 .

]
n

Since these rays cross over one another, we shall require the constraint
equation for the caustic. This is obtained by taking the derivative with

respect to p of Eq. (2. 3. 3). The result is

To be more accurate, we maust say that the ray is not exactly on the inter-
face but just a small amount above it. This removes the ambiguity in
dc(z)/dzlz -.1
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0= (z+z')/P; + -Zf cosh™ ' -l‘pﬂll - ZLPZ/IPIIZP s 220
1
0= z'/P: + = [c:osh-1 o cosh”! M]
JE lp, | eyl L (2.3.4)
i L 2 -—1- . v+ L ] z<0
lp, |2 P 2 2 28l T
pl 2 [A(Z+L~) - lpll L ]

The caustic is obtained by choosing a value of p and solving for z; then by
using the ray equation to find x . We see that the first equation, z>0, can

»

ve solved explicitly for z while the equation for z<0 cannot.

It will also be of interest to know the number and the location of the foci
formed by the returning rays. The constraint equation for the foci is obtained

by taking the derivative of Eq. (2. 3. 4) with respect to p. Upon doing this, we

obtain
2L()p, |-2¢) 2
3(z+2z') 1 1 2Lp
0 = - - z>0
> lp, |4 lp, 1% -
P, Pl P, Pt P
(| |2- 2¢)) (2.3.5)
0 = 32 Py YL, z+ L ] "
- - 4
oy lp, | P2 L)’ |p, 171
i L;gz 1, (z+ L)L L <0
| |2 3 [ 3 l |2 2-3/2 . ‘
P, P, A(z+l) - P,

To obtain the location of the foci we must solve Eq. (2. 3. 4) in conjunction with
Eq. (2.3.5). This will give us the z coordinates of the foci; then the ray

equation can be used to obtain the x coordinate.
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As has been mentioned in the introduction, Orlov b~ - studied these
returning rays. To be more specific, he has made a det ! analytic
study of the caustic and foci for z>0 . He has then plotted the causti: for
some typical values of parameters when both 220 and z<0. We have
redrawn two of his graphs which are representative of the caustic's general
behavior. These are shown in Fig. 2.2. In the upper graph (a) we see that
five cusps appear on the caustic while, in the lower graph, two of the cusps
disappear when 2A>(1.076) L.. We note that the bow tie configuration which
was observed in Chapter 1 occurs twice in ° and once in (b). As L
becomes smaller the remaining bow tie configuration disappears and only
one focus is left. This is shown in Fig. 2.3 where the caustic has been

plotted rather than just sketched for L= .1,

The caustic appearing in the three previous graphs share two character-
istics in common. We see that at large distances from the source, the lower
branch of the caustic approaches the interfu;e while the upper branch appears
to have corrdinates that become urbounded. The asymptote to the lower
branch of the caustic can be obtained from Eq. (2. 3. 4) with 2<0 if we assume
that p2~0 as z~0. By usir, this procedure we find the asymptote to be

%

x = 2' JL/(20(-2) ) (2.3.6)

In addition we can also find an asymptote to the upper branch of the caustic
by assuming that as P, -0, z~®, By using this assumption in Eq. (2. 3. 4)
with z>0 , we find that

X & J;;n(z+z') + ./51715 Lln (;Zz;_‘) (2.3.7)

1

with 2
z+e' w 2L¢ A/ lp, | . (2.3.8)
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Twn Sketches of Caustics in a Parabolic Medium
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We see that as the rays are emitted closer to the critical angle (pl -oO)‘.
the caustic formed by these rays tends closer to x= ./t:l Ja (z+2'). We

note that this equaticn represents the reflected critical ray irom an abrupt
trangition.

When L is small the asymptote giver in Eqs. (2. 3. 6) and (2. 2.7)
dascirios the crustic except for the region near the focus. The approximate
13cation of the focus can be obtained by assuming

32 12 L

s~ - LAl pleBi™ | J<a (2.3.9)

whets A and B are convtants tc e determined. When these assumptions
are used in Eqs. (2. 3.4) and (2. 3.5) they lead to az asymptotic approximation
fos the focus. The appioximate locaticn .of the focus which is obtainedlis
given by '

x=Je 78 [+ + -f,_-= 1n t2'/3¢,1] (2. 3.10)
and
z=-L+2 cl/z Lm . (2.3.11)

As L~8 the raya that make up the lower and upper branches of the caustic
appeay to have the same ray trajectories respectively as the reflected and
lateral rays associated with an abrupt transition, We also note that the
fo¢us tends toward the point at which the critical ray is reflected from an
abrupt transition. The comparison made above, says nothing about the ray
contridutions but only states that the two layers being compared have similar
ray trajectories.

S S . T
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2.3.2 Asymptotic Evaluation

We will now asymptotically evaluste the formal solution for the

reflected field, Eq. (2.2.4) when k°L>>l and compare our results to the

predicticn of geometrical-optics given in the last section. To effect the

avaluation of the integral in Eq. (2. 2. 4) in physical ¢erms we will expand

the reflection coefficient in a geometric series and then asymptotically

evaluate each term individuaily. The manner of development of this section

will parallel section 1. 3. 2. quite closely.

The reflection coefiicient given in Eq. (2. 2. %) can be written as

= roa I‘I.. (rob ” I~oc)
s roa * 1-T_ T
L ob
where E* (-a? » 0) +ial E*(-ai » 0)
T =
L ; 2 . 2
E (-al , 0) + ia ]E:(-al , O)
' 2 . * 2
E (-a ,c)+ia E -a_ ,c)
P 2 1
oa * 2 . * 2
E (-al , C)- 1azE (-al » C)
E'(-af. c) - ia E(-az. c)
r 2 1

ob _*'_ 2 . * 2
E (-al,c)-zazE (-al,c)

0, 2 . 2
E (-al ,c)+ 1azE(-al , €)
*f

2
E (-al ,

r =
ocC

. * 2
c)+ xazE (-al , C)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)
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It lrLrob| <1 along the integration path C, the denominator of the gecond

term in the retlection coefficient, Eq. (2.3.12), can be expanded in a geo-

metric dories. A c§1culaﬁon of 'rLrob' shows that in the intervals

0<Pep <=, Imp, =0 and Rep =0, 0<Im< VB, the term is less than one,

how«ver, for the interval Re P, =0, \,/A-Impl<° , we find lrLrob =1l. In

Chapter 1 a simiiar problem had arisen and it was circumvented by deform- $
ing the integration path C a slight amount to the right of the Im P, axis, We

will perform a similar deformation of the path C at this point, however it

must be assumed that ko L>>1 in order to show that 'rLrob' <1 along the

deformed path.

We will make use of the series expansion in Eq. (2.3.12). The
result is

1‘=I‘m + z 1‘n (2.3.17)
n=0

)

where I‘n is defined in Eq. {:.3.14) and where it is assumed that the
“1,

fL . I'“ ’rob and roc of Crapter 1 are replaced by those of Chapter <. :

By substituting the series form of the reflection coefficient given above i

in the integral representation for the reflected field, Eq. (2.2.4) and inter-

changing orders of summaticn and integration, we find that

E_=E_ + 2 E_ (2.3.18)
yr T =0

where Ero and En are defined by Egs. (1.3.16) and (1.3.17) respectively.

Before evaluating Ero and En by the method of steepest descents we
will asymptotically approximate roa and rn to reduce the complexity of the
integrands. These expressions, roa and l'n , are composed of parabolic
oylinder functions whose asy nptotic approximations a}ong the integration

* L
path C appear in Table 2.1. The functions E and E do not appear in
the table, however, their asymptotic approximations can be obtained by
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taking the complex conjugate of the asymptotic expanrions for E and E* o0

The asymptotic approximatious for E and & will be needed close
to the integration path C when subsequent path deformations are made.
These asymptotic approximations can be obtained by analytically contin-
uing the formulace in Table 2.1 if we exclude the regions near P = 0, /A .

In these regioas we can use

2
nalla+in/8+id_ 2
E(-af. x)=ZFe ! 2 U(-nf, xe ™y (2.3.19)
2
-ma_ /4-in/3 + i8_[f2
E*(-af, x)= e ! z mﬂaf. x4 5320

where U is another form of parabolic cylinder function, x=0 or x=c and
§z=arg T2 - iaf) , iz =0. Olver(Zlb) hag obtained the asymptotic
expansions of U and U’(dU (a,x)/dx=U’(a, x) ) for large a, , and any x and
: arga, . His expansions for U and U’ can be used near p,*0 and p, =8 ,
, however, we cannot come too close to p, =0 since a, = (r_2/B) p, and the

asymptotic parameter a, will tend to zero. The functions U and U’ could

1
have been used over the whole integration path, however, their asymptotic

| expansions are mor: complex and unwieldy.

By using the asymptotic expansions found in Table 2.1 to calculate
1‘“ ahd l‘n in the region Rep, ~0, ./lT<Imp1 <o, and then by substituting
these spproximations in the appropriate integrals, we find the Ero and En
have no asymptotic contribution (k°L>> 1) from this section of their integra-
tion path on the top or second sheet. In a similar manner by the use of Egs.
(2.3.19) and (2.3.20) along with Olver's asymptotic expansions, we can
sbow that the integration path in the region of the branch point, P =/,

gives no asymptetlic contribution.




56

yied uonyeadajur ayj uo mcoﬁucﬁ.«.hf.ocﬂ.>o orroqeaed jo swioy onjoydwiAsy [ °2 digel

¢ ¢ | d] A/
Ydpz|lap < lepL4+ BE)pp: € % 4 — % .L:7
- = = °p + Yysoo 14z g
2 Iy 2 m 9 1- | T T
2 2
1
| 4] ~ 1 o
LIRSS r4 2._¢€ k d I / 2.1
5F iU __m_+_n_ 1¥:="0 st | —F (- uue _m+mp_ e
? 2
Ty T (2
8 eg
revwend] TR Ll broepeet A RTCAL LN ICRMR
(*p-2%¥) CR *p-o1 et
2 2
2 €, _ 'lds. 2 €, _ .lhﬁ. M ¢ -
(ges/*p - 1) 5 (ces/"p-1)—= 10’ )3
2y Tot
1 1 1
®Z¢ . vzg
ov ouies — (Z4—+1) E o(f——-n Yo 00 .M.-,.m
Is &= v/ -
2
1 1 i 1
2€ _ -:,. vz¢ st
g¢ JwIRg ——> AN..I—I-: 2 .\\.::v Tt S.m--.m
mdkl
2
o >ldug > gf vp > lduwr >0 e='dug
. 0= 1d ey 0=1'day ® >Wdayg >0




PRtiaieynpa hothiil

Howrs mdnve e

e

-57-

If we again use the asymptotic approximations from Table 2.1,
we find that |

. 3
I‘oa ~ 1A/41’pz (2.3.21)

when P, is on the integration path between P, =,./e:_l and P, = ivA . We now
use this approximatior in the integral for Ero and apply the method of
steepest descents. We will not go into the details since they exactly
paraliel ‘he asymptotic evaluation of Ero in Chapter 1. Tt will suffice to

say that there are two relevant saddle points denoted by D and E, as before.
The contribution from E is exponentially small while the contribution from
D can be interpreted as a ray reflected from the z=0 interface as showr in
Fig. 1.19. The asymptotic order of these contributions are shown in Table

2'2'

We now asymptotically approximate En . First, the formulae in Table
2.1 will be used to simplify rn along the portion of the integration path
between P =.\/E-l and p, =i /3. Wken O<Re P, < el,hnpl =0 we find that

i[2(n+1)8, -nn/2]
i e ! (2.3.22)

n 2n+l 3n 4n+4 3n+2
4 pZ pl T

and when Re P, = o, 0<Impl <./A we find that

n/2 :
r - - el 2(nt1) 3, (2. 3.23)
n n 3n n
8 p2

where 6, and 62 are defined in Table 2.1.

|




Type Asymptotic Order
n : o
-(3n+5/2)
B Ok )
-3/2
D Ok )
-ak
E o °),a>0
Table 2. 2

Asymptotic Order of Geometrical-Optic Contributions

The above approximations are good in the vicinity of the integration path
except near the origin, i.e., (r/2/8) pf<< 1.

K we now replace the 1‘n appearing in the integrand of Eq. (1.3.17),
by its asymptotic approximation and find the saddle point equations as in
the previous chapter, we obtain

!
(”‘- T X, 2(n+1)L.inh'lé@) =0 (2. 3. 24)
1\ p, P P,

o<Rep1<./§ , Imp =0

and
z+z' - x 2(n+l) L -1 L
+ = 4 h =0 2.3.25

Rep, =0 . o<rmpl<./A'

P
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where the upper sign in the above equations refers to the top sheet

while the lower sign refers to the second sheet.

Upon obtaining the saddle point locations from the abcve equations,
we deform the contour C through the saddle points and into the decay
regions. Since the contribution due to the portion of the integral lying
in the decay regicu is exponentially small, the integral En will be asymp-
totically equal to the sum of the saddle point contributions. The contribu-
tions arising from saddle points obeying Eqs. (2. 3. 25) and (2. 3. 24) will be
known as type An and Bn cortributions, respectively. It can be showrn that
no relevant saddle points occur on the second sheet for any n and therefore

the deformed path will be the same as that shown in Figs.1.13 and 1. 14.

We shall now focus our attention on the relevant saddle points on the
top sheet and their contributions to the reflected field. The integral Eo will
be considered first, since it contributes the dominant terms to the reflected

field for large koL s

We will now investigate the saddle points of type Ao . A comparison
of Eqs. (2.3.3) and (2. 3.25) shows us that the two are identical. This means,
as in Chapter 1, that each saddle point corresponds to al returning ray. If
we now recall our discussion of returning rays, we will remember that there’
are two basic regions divided by a caustic. To the right of the caustic there
are twc refurning rays; to the left there are none. For certain parameters,
the caustic can assume a bow tie configuration for z>0 as shown in Fig. 2. 2(a).
Inside the bow tie there are four returning rays while outside the bow tie there
is the same number of returning rays as before. With the above information
we see that there are 0, 2 or 4 solutions, depending upon the location of the

observation point, to Eq. (2. 3. 25) .
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We shall next examine saddle points of the.type Bo . An investigation
of Eq. (2. 3.24) shows that there is one saddle point for any given observa-
tion point. The saddie point contribution can be interpreted as a ray reflected

from the lower intsrface. The ampiitude factor of this ray has O(ko-slz) .

As stated previously, the reflected field, Eo » is composed of a sum of
Ao and Bo type contributions. The deformed path on the top sheet is shown
in Figs. 1.15and 1,16 when there are no saddle points or there are two
saddle points of the Ao type, respectively. When there are four saddle
points of type Ao the path is similar to the cnes shown, but it is not shown
here. An approximation of the deformed path shows that it can be deformed
around the origin for any given observation point and, therefore no contri-
bution, similar to type Co , arises as we observed in Chapter 1 . This
means that thers is no lateral wave contribution. However, there are two
(assume that the bow tie is not present) rays through each point to the right
of the caustic while in a similar region, in Chapter 1, there is only one ray
through each point. When the observation point is located far from the source
compared to layer thickness we observe: first, that the returning ray in
Chapter | has a similar trajectoy to one of the returning rays of Chapter 2;
and second, that the trajectory of the lateral ray in Chapter 1 is similar to the
trajectory of the other returning ray observed in Chapter 2 .

We will now evaluate explicitly the contribution due to the ray whose
trajectory is similar to a lateral ray. The evaluation will be limited to
~Yservation pointe which are located far from the source compared to
layer thickness and also those observation points where Lp>>L . Here Lp
is defined as in Chapter 1. The last condition has the following physical
explanation. When the observation point is located far from the source, the
upper branch of the caustic is approximately described by Lp= 0. The
condition, Lp>> L, says that the observation point should be many layer‘

thicknesses from this portion of the caustic.
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By using the above approximations on the saddle point equation,
Eq. (2.3.25) , we obtain the approximate location for the two saddle
points in question. They are :

-J/aL _/2J¢ L
- Z '20 = P !
Piy © Kb (z42) 3 : lpyy =24 e . (2.3.26)

The notation used is motivated by the fact that the contributions from saddle
points Py, and Py 2Te similar to reflected and lateral rays from an abrupt
transition. The first saddle point Py is obtained by assuming that the last
term in Eq. (2. 3. 25) is small while the saddle point Py is obtained by
assuming P, w0 . From Eq. (2. 3.25) we see that there appears to be a saddle
point at P = 0 , however the asymptotic approximations used to simplify the
integrand are not valid there.

Now by evaluating the integral Eo at the saddle point Py, e obtain

-JAL /2./e L
Al/4 e P

ik (Bz+z)+Je. x+ B L)+i3n/4
E ~ e o 1 (2.3.27)
L 2J/m el EOL e ;

where EL is the contribution fron; E0 which is due to the saddle point p iL
The phase of the above contribution corresponds to a lateral ray, however

=12
the amplitude is of O(k0 ”) which makes this contribution a classical geo-

metrical-optic result.

An examination of Eq. (2. 3. 26) reveals one basic difficulty. As Lp/L
becomes increasingly large IplLl -0 . In order for the asymptotic forms
of Table 2.1 to be valid a§>>l or using Eq. (2. 3. 26) we find

-JBL_/2/e L
Te P >1 . (2. 3.28)
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 This inequality essentially says that as LPIL gets very large compared to

7, the geometrical-optic result, appearing in Eq.(2.3.27), is no longer
valid. We see rays emitted from the source close to the critical angle
resemble geometrical-optic rays with lateral ray type trajectories, but,
as the emission angle becomes closer to the critical ray, the geometrical-
optic interpretation can no longer be given.

An evaluation of En for arbitrary n will show Eo to be the dominant
term in the series. We will not go into detail since the evaluation exactly
parallels a similar development in Chapter 1 . It will suffice to say that
the contributions of types An and Bn will be encountered. Those of type
An are returning rays reflected from the z =0 interface n times. On the
other hand, the B contributions are those rays reflected n+1 times from
the £ = - L interface. The asymptotic order of those contributions is shown
in Table 2.2 .

2.4 Ewaluation of Reflected Field for Large koLp

In this section we will investigate the reflected field from the
parabolic transition when koLp >>1 and Lp>> L. From this investigation
we hope to learn what the pertinent field contributions are, when the layer
is thick compared to wavelength, i.e.: koLp >> k°L>>l . In addition, we
want to relate these contributions to the field constituents that occur when
koL»koLp»l and when koLp>>l , kK L<<1.

The integral representation for the reflected field is given by Eq. (1. 4.1)

where the reflection coefficient used there is replaced by

f:-A/A

tn (2.4.1)

tb
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where

: w'(-.f, 0} - iai'(~af. o)i ‘-w'(-.f, 0) - iaiW(-:f,O)f

Atn.
bn

{ W'(-af ,=c} ¥ iazW{-af s -c’)i "W'(-af ,c) ¥ ilzwi"f . C)g

W(-lf . 28) are another form of paradolic cylinder functions which are
defined by Abramowitz'>2! and W(-al Q= awW (-2l £1/d2. We see that the
integral representation employed here is the same as that used in the last
section, except with a differeat reflection coefficient. 'I"his reflection coeff-
icient is derived via Appendix A. by choosing # ;z) N(-g‘ » £} and

] (:) W(-ai , &) where 2 s been defined in the beginning of Chapter 2.
'l'hio alternative form of reﬁactﬁos czoefficient makes the computations, that

will follow, easier sincs the W{-g , 223 are real functions .

K w~ now use the assumption that k .ﬂ<e( L then the reflection coefficient
in Eq. (2.4.1) is slowly varyinz °crrpared to ¢ exponentul in the integrand,
and the standard steepest descent techriques can be used to asymptotically
evaulate the integral representation. We will not go into detail since the
develupment parallels Chapter 1, Secticn 1.4,

The results of this asymptotic analysis are that there are two saddle
noint contribations which rmake up the reflected field. The firs: of these is
siznply the reflected ray contribution. The contribution has an O(ko-uz) for

21l layer thicknesses considered here.

The second contribution to the reflected field comes from the saddle
point occuriang at P; = 0 and it reduces to the lateral wave contribution on an

abrupt interface when k L-0. The contribution will be denoted by E, and

it s given by
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v {kO[JK'(z+z')+.,’c_;x} +ig(Jhr) +i3n/e
A(SBr)e
£ - (2. 4.2)
L /s (l:ox.)a"'2
where
AWET)= J_l«_r: | . _TAT(1/4) (W'(0,c)W(0,-c) + W(0,c) W'(0, -c)]
2|dp T(¥/4) 2 ot 2
-0 {(w’(0,-c)- W'(0,c))” + = tW(0,c) + W(0,-c))"]
pl- 4
[2. 4.3)
and
- -1[2 W/(0,-c) -W'(0,c)
#JBT1)= 2tan c W(0.2) + W(0, -c) . (2. 4. 4)

The ampiitude A(/3 1) and the phase ¥ (/B 1) have been plotted by computer
and are shown in Figs. 2.4 and 2.5. In these figures the thick layer
approximations to A(J/A T)and ¥(/AT) are also shown .

The physical interpretation of E L can best be found from an investigation
of the small and large 7 limits. When 7 is small, as we have already stated,
EL reduces to tke lateral wave on an abrupt interface. We see this from the
fact that as 70, A(JBT7)~1 and ¥(J/A7)=~0. When k L>>1, or the layer is
large compared wavelength, EL reduces to

(1/4) c1/4 12

1k[./_(z+z)+ f_v+LJ_]+1ﬂ/Z
o SR TN 3/4

|
|

|‘

l

I

|

2(2m) (kL) . (2.4.5) | "
|

|

|

I

I

If we compare the lateral wave contributions excited on a linear and

parabolic layer for koL large, as given in Egs. (1. 4.10) and (2. 4.2)




43m0d JI®H 3uUQ Y3 03 SESUNDIYL UORTSURIL POSFTVWION °sA epnyjrdwiy sawm Texajey ‘

v'2 g ‘
o ot Gt O'e G2 02 X o'l 3 0
T T T T T T T T \J
”~
”
\\
3 r9/r2) 0 - —s
\\
(2 9/) v ¥O4 | i
NOILVNIXONddY 2 DMV = = — = 2 o'l
9V
—S°1
g
02
—s2
—o¢
. !
4s¢ !
i
VY




-66-

sSOUOIYL UOIIISUNI] POZ}[RUWIION .u-> sswyg vAep [exde]
§°'2 ‘54

Q| ] . . . . ‘b . > :

(oM |

0

(= ¥4 ¥O4 Loe
NOILVNIXONddY 2 IV == ===

(294

—0¢

-0

-—109

.02

U Y




s

) ~r=acgiewes

-61-

espectively, we observe that both have a similar phase dependence and

an amplitude dependence on distance of O(L;m) . The outstanding differ-
encs between the two contributions is that the lateral wave, excited ona
linear layer, has an excitation coefficient of O(k‘, --”6) whilelthe lateral
wave, found on a parabolic layer, has a coefficient of O(ko ) . Ve see

for high frequency that the parabolic layer wave is excited more strongly.

The lateral wave contribution given in Eq. (2. 4.5) also sheds some light
on another ares. In the previous section, a geometrical-optic ray contribu-
tion was found. It has a ray trajectory similar to a lateral ray, however,

&8 the obn‘emtion points move away from the source, Lp>>L , the geo-

meh;ﬁhl-upﬁc contribution becomes invalild. We see now that this contribu-

-, tion transforms into a true lateral wave contribution when koLp>> kol..>>l.

The trarsition between the two regions of validity for the E contribution
is quite complex and, as yet, transition functions have not been found.
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CHAPTER 3,
THE SYMMETRICAL EPSTEIN TRANSITION LAYER

3.1 Jnfgoduction

In Chapters 1 and 2 the reflected field fzom a linear and ;arabolic
transition has been studied. There it was found that a lateral wave was
excited for all layer thickresses, and that its character was chauged 2s
the normalised layer thickness, koL , was varied. For both of the above
mentioned csses the thick layer limit was particularly interesting. In this
1imit the lateral wave discussed in Chapter 1 appeared to be excited at the
point that the ciritical ray was tangent to the lower interface. In Chapter 2,
0o such interpretation was possible, but instead, the lateral rays resulted
from returning rays ematted close to the critical.angle.

In an examination of the above problems, we Lad noted that the continuity
of the layer at the lower interface was the critical factor in determining the
type of lateral wave that could be excited. A logical extension of the stidies
underfaken in the first two chapters could consist of an investigation of the
reflacted finld from a layer that was completely continuous at the lower inter-
face.. Wave functions for the layer mentioned above could not be found, there-
fore we ro: orted to the study cfa layer of infinite extent. The symmetrical
Epstain luyer, to be considared in this chapter, is such a layer. Its dielectric
profile is given by

1 0 £>0
e (s) = , A=1l-e¢ (3.1.1)
€ +Alechzz/L , «<0
Thic layer has the property that as v - =, ¢(z) - ¢, and all derivatives of
¢(z) approach sero. Thus, we see that the laver is. completely continuous

T
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at the lower homogeneous medium which occurs at minus infinity. The
dielectric layer slso bas the required propesty that as L.«-8 the layer
approaches an abrupt interface.

In this chapter we will first investigate the structure of the retu-ning
ray trajectories when koL >>1. Following this, a uniform asymptotic
apnroximation for the reflected field will be derived which will be valid for
abritzary values of ltoL. By means of this approximatiorn we can relate the
lateral wave on a sharp interface to the geometric-optic rays observed when
ths layer is thick compared with wavelength,

3.2 ¥Formal Solution

The integral representation for the reflected field in the region z>0 is
ocbtained in & manner similar to that used in Chapters ! and 2. The source
configuration is the same as before and again only the F..y component of the
electric field is excited. This component satisfies the wave equation,
Eq.(1.2.1), where the source amplitude has been assumed to be normalized
as in Eq.{l.2.2). The representation ior l-.':y is obtained by the application
of Fourier integral techniques to Eq.(1.2.1). The result is given by a sum
of direct and refiected fields

E =E + E
y vy yr
where o | l
4o ik {p_lz-2'| +px]
1 o F2 dp
E D - omem— e ’ z_>_0 (3'2'2)
w™ [
and - i !
P B e Jolete ey 0 L a2y
yr 4T, P,

it Ao et
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with

ik p, + 8 (0)/8(0)

T=

L7y (""2)i » PG (‘1 - Pz)’ . (3. 2.5)

The function 8(z) used in the reflection coefficient T is defined as the solution

of the differential equation

d2

';3 + k (A sech’ (/L) + 1 )] 8(z) = (3.2.6)

which satisfies the radiation condition as z~<-®, The derivative of 8{z) with
respect to z will be denoted by 8’(z}. Is order to dafine the integrals
appearing in (3.2.2) and (3.2.3) completely, the squars roots P, and P,
must be specified. This specification is shown in Fig. i.4 where the four
branch cuts bave been chosen. The integration path P is also shown in the
sams figure.

We will now solve (3.2.6) exactly Trarsforming (3.2.6) by

€ = tanh (z/L) (3.2. 7‘)
reduces it to
{u—as; - 2ty + [wwn -ufia-g®] ] eso
(3.2.8)

with

3

B = +i'rpl , V== 1/Z+(1/4+12A) , 'r=k°L. (3.2.9)

- ik p, -0 ’(0)/6¢0) 2 (3.2.4)

This i3 the Associsted Legendre equation whose two independent solutions are

#\: (¢, Q: (8)s I we represent P‘: {€) as an hypergecmetric £uncti0n(23)-ahd

1st 8 <.® we see that it obays the radiation condition. The solution to (3, 2. 6)
is then

o(e) = P [ - tanhia/L) | (3.2.10)

!
%
7
!
4
;
s
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The initial value (2=0) of this Associated Legendre function and its derivative
(24)

are given in terms of Gamma function |, Using these relations, one obtains

8(0) _ _ 2r(v/2+y/241) T (v/2-u/2t1)
5 (0) IT(v/2+ K/2 + 1/2)T(v/2-u/2+1/2) "("*“’/"J

or (3.2.11)

’

8 (0) - 2T (1/2 - v/2 - u/2) T (v/2 = u/2+ 1)
8 (0) LT (-v/2-u/2) T (v/2 -u/2 & 1/2) )

(3.2.12)
In order to determine the asymptotic properties of the reflection co-

effi:ient the location of the poles of the gamma function will be necessary.
Consider the poles of T (v/2 + U4/2 + 1), for example, They occur when

$

1 o
'1/4'*': (1/4+ TZA) + iTp1/z+1=-n, n'-'o,l,Z, 200 (302.13)

is satisfied. Since

L %

T0)° < 3/2+(1/4+T12) (3. 2. 14)

for all 'r(t\)é , the first pole lies in the range Rep, = 0, .(A)é <Im P, - Poles
corresponding to n=1 and higher have larger values of lpll and therefore .'
occur in the same range as the first pole. The pole locations of the various
gamma functions appearing in (3.2.11) and (3.2.12) are shown in Table 3.1.

%

Since these poles occur on the Re p axis for |Re p| >(e1) they lie directly on
the integration path. If a small amount of loss is added to the dielectric

rmedium, the poles with Re p>0 shift into the first quadrant of the p plane

while the remaining poles shift into the third quadrant. With this information ,

the integration path can be deformed around the poles in the correct manner in

the 1imit.of zero loss.




Gamma Functions

Pole Locations

T(v/2 + /2 +1)
T{v/2+/2 4 1/2)
T(v/2 -u/2+1)
T{v/2 - /2 +1/2)
r{i/a2- viz ~ u/2)

r{-v/2 - Lu/2)

1
Re p, = O:Ir‘npl>(A)i
1

1

Re P, = OEIm pl>(A)é
]

Re P, = 0} Im Py -(A)i
1
]

Re P, = Oslmpl<-(A)§

\J

1]
0!Im p;<(A)
'

Re P,

1
Re P, 0!Im p1<(A)%
1

Table 3.1

o

I'cle Locations
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Before proceeding we shall check the convergence of the integral.

To do this we asymptotically evaluate (3.2.10) as Ipl -=_, We find

8’(0/8(0) ~ Kk |p, | (3.2.15)
which gives a reflection coefficient
=T . (3.2.16)
lpzl 4+ Ipll

when p is large. Sincz the exponential in the integral decays for large p, the
integral converges.

To simplify future calculations, the branch points at p = %(e l)* are
now removed by means of the transformation

2
p=(el-plz)* ’ pz=(A+pl )b . (3.2.17)

This transforms the integral in (3, 2. 3) to

p,T ik [p,(z+2z')+px]
E -+-—l— .. e ° 2 dp z>0 (3.2.18) °
R ~ 4ni PP, 1 & . 2.

where the multivalued functions p, P, are defined on a four sheeted Riemann
surface, The first two sheets of this surface are shown in Figs. 1.5 and 1.6 .
The multivalued character of the mapping (3. 2.17) leads to a transformed inte-
gration path, C , in the Py plane. Parts of this path appear on different sheets
l%nco any two points symmetrically located on path p lead to the same value of

Py

3,3 Ray Trajectories

When the parameter L of the Epsteia layer is large in comparison with
& wavelength, the medium can be considered slowly varying, and the methods
of geometrical optics can be used to find the ray trajectories, In this section,
the ray family will be found by using the ray equation for a stratified medium

(25)
given in Kelso .The caustics of this family of rays will also be found and the




- 74~
detailed behavior: og&uouuacou;;- 0 will be investigated and related
te the half space problem.
First, ﬁcrca.octodny-h‘thclwmqmmmodlu:;. >0, will be
considered. These rays are straight lines given by

x/p-(s+s’)/ pz-Lﬂllpll =0 (3.3.1)

where P, is imaginary for reflected rays, i.e., P, = ilpl |. The same ray
equation is recovered from the exact solution,(3,2.18) , if Tis replaced by its
asymptotic approximation (ko L >>|) and then the saddle point condition is
applied to the resulting integrand. The caustic is found by eliminating |pl'

between (3.3.1) and the derivative of (3.3.1) with respect to Ipll . We obtain
3
23 (e a)? e P[] 6aa2)

This caustic coincides with the critically reflected ray found in the half space
problem in the limit as L - 0.

The rays in the medium z < 0 are divided intc three types: transmitted
rays; critical ray; and, totally reflected rays. The transmitted rays are

not of great interest to us. The critical.ray is given by
2 r )
x= (¢ /6)" [2 - Lowhi/m)|, [p) =0, (.3.3)

This ray never turns since z is a monotonically decreasing function of x, The

totally roflected rays satisfy the equation

2 =2 2
ccaw=1 - 2|p1| P, sinh (z/L) (3.3.4)

where

'-l ’
w = lel | (pLj (x-xo), x=pz /pz, o<wg2m,
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These rays enter the inhomogeneous medium at x = X turn at x = x X,
(xt = TTPL(Z'Pl l)-l) and return tr. the linear medium at x= xo+ th. A
typical ray is shown in Fig,3.1. The rays have been plotted for some typical
pa.nmotero in Fig.3.2 .
The caustic formed by these returning rays is found by eliminating

|pl | between the derivative of {3. 2.4) with respect to |pl| , i.e.,

€.X ¢ ¢ A
1 iz 1
3 - 3 > tan (w/2) (3.3.5)

PL p,L -!plhaz
and the ray equation, (3.3,4) . The caustic is shown in Fig. 3.2. It consists of
two branches: one that crosces the z = 0 line and connects to the caustic
in the homogensous space, arnd another that tends asymptotically toward the
z = 0 line as x = ®, The ray and constraint equations can be solved exactly
for the exit point of the first branch into the homogeneous medium. A
calculation shows the exit point lies on the beginning of the free space causﬁc.
The asymptotic character of the seccnd branch can be found by assuming
p2<<l. Using this approximaticn in the ray and constraint equations gives
the asymptote

z/L = - z'[(A)tx]-l . (3.3.¢
This asymptote tends toward the interface as L. = 0.
As the two branches progress deeper into the inhomogeneous medium
they meet in a cusp, The location of this cusp can be obtained with the
additional constraint equation found by taking tixe derivative of (3, 3, 5) with

respect to IF'1| . The result is
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REFLECTED RAY

Xgt2X,

Fiz. 3.1
Typical Reflected Ray

.
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3 2
3¢ lpy | 'p, = 3
z s z - h-n (./2) . (3. 3. 7)
ApL

The simultaneous solution of (3.3.4), (3.3.5) and (3.3.7), will give us the
cooxdinates of the cu'sp. Unfortunately, they could not be solved explicitly ;
however, an asymptotic solution was obtained as L~<0 . The only nontrivial
solution to this system of equations with small L is obtained when the tan(w/2)
remains finite and non zero and |p, | is emall. From (3.3.7), we then have

lp, | = s'/? (3.3.8)

where B is a constant to be determined. Putting this into (3.3.4), (3.3.5)

angd (3.3. 7) we find B obeys the transcendental equation.

3/2 1

1/3 .
n-tan [ A )”3 ﬁz_ 3z'¢ 2) /Aé (3.3.9)
‘1
l

and the approximate location of the cusp for small L is

2/3
x=(el/A)é z’ + O(L / ) (3.3.10)
l as L. = 0 the caustics and cusp approach the interface and transition region of
the half space problem.

3.4 Uniforma Asymptotic Solution

Writing the reflection coetficient in exponential form
— i
T oot (3.4.1)

and putting this into (3.2.18) gives us

Ikb[pz(zﬂ )+Px+ v(pl.(A) 'r)]
E. mi = dp,  (3.4.2)

3 B (e g e b

B
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where

' I ~1§2r(v/2 + u/2+ 1) T (v/2-u/2 + 1) n
WPy (A7) = 2 tan ey T(SZ - w12+ 112 (vizwm/2s 1/2)"‘{3“”“’]‘,‘3'4' 3)

The multivaluedness of the function tan-l does not appear in the overall integrand

.1
gitan
since ¢ is single valued.

The uniform asymptotic evaluation of the above integral is performed
by first finding the saddle points for all values of 0<T< >, In general, these
saddle point locations will depend on the large parameter ko and the normalized
length T, The location of these saddle points can be found: first, by the
method of successive approximations and second, by using an asymptotic
approximation to the function § for large 7, The first method is a generalized
sharp interface technique and is valid when the length L is small compared to
z’ and ko is large, while the second method gives the geometric-optic result
and holds when T {s large. Since the two methods overlap for a restricted
range of T, the saddle point locations can be found for any 7.

The saddle point equation is given by

p, Uz +2')/p, - x/p] +k°'1(dt/dp1)= 0 (3.4.4)
on the top sheet and

P, [(z+z')/pz +x/p 1+ ko—l(dt/dpl) =0 (23.4.5)

on the second sheet First, we will apply the method of succensive approxi-
mations to (3.4.4) and (3.4.5). The solutions to (3. 4.5) neglecting the

perturbing term ko.1 (d#/dpl) are

P =0 5 D, =2i [x A - (z+2') €
1L ir 1] (3.4.6)

v ———— . e AR W 1 T -
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where the saddle points PL and P, t‘(<|») correspond to the lateral and reflected

waves found in the half space problem. The superscript is used to denote the

order of approximation. The first approximation is obtained by evaluating

the perturbing term in (3. 4. 4) with the unperturbed values given in (3. 4. 6) and

then assuming p (l) J?) + bpl with bpl <<l. The first order saddle points

are:

(1) ' -1 _ #
Py = (e)) (kL) (dy/dp)) o= 0’ L =x-(¢, /A) (z+

(1)_

where Lp is the distance the lateral wave travels along the interface in the

For this to be true it is sufficient to have

approximations is valid when

kL >>1 . L/L <<l, 0«4T<o,
o P /I p -

point is found on the negative imaginary axis near the origin,

saddle point equations are

| | arlegree)
(kly)  [ap, | 05T <7 Repy= 0, 0.<lmp, <)

approximations for the Gamina functions in (3. 4. 4) and (3. 4.5).

z’)

half space problem. The approximate method is only valid when ép i <<l,

io

One can show for small and moderate values of T that dt(pl(A)é'r) / P
bounded except at P,= 0 and for large values of 7 that dt/dpl ~inT,

With the aid of the above informaticn, wa see the method of successive

{3.4.7)

o= o0 ([t r s+ 0 ) et 2e,) )] (a4 /s )Hp © .3

(3.4.9)

(3. 4.10)

When the method of successive approximation is appliec to (3.4.5), one saddle

The second method of finding the saddle points is to use the asymptotic

The resulting
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{2tz T 2) - {-tOpsheet
P\ P, * P)+iﬂhﬂo' 4 second sheet ° (3.4.11)

Here again, we obtain a similar arrangement of saddle points to those obtained
by the method of successive approximation. Three saddle points appear on the
imaginary axis of the top sheet. Two occur for 0<¢ Impl< (A)t and one occurs
for -([3)i < Imp1 < 0. On the bottom sheet we find only one saddle point on
the imaginary axis for -(A)§< Imp1 < 0. Solutions to (3.4.11) give a good approxi-
mation to saddle peint location for arbitrary L/Lp and 7>>], The two
approximate methods have a common region of validity when 7>>1 and
L/L <<l,
P
The decay regions relative to the saddle points have been investigated
in Appendix C‘: They are shown in Figs. 3.3 and 3.4 . The shaded areas
correspond to decay regions of the integrand. [he integration path, C,
will now be deformed into the path C’ as shown in Figs. 3.3 and 3.4, The
deformed path has been chosen to go through the two saddle points which
lie on the integration path, and everywhere else to lie in a decay region.
In Appendix B, an investigation of the singularities of the integrand t. at lie
between the original and deformed path is made. There, it is foun- that
those singularities give riee to residue contributions which are, at most,
an exponentially small order, and can be neglected. As a result, the
integrals over the two paths are asymptotically equivalent.
Since the deformed path, C ’, liesina decay region except at

the two saddle points, the integral

The saddle points and decaying regions are for the dominant term of the
asymptotic expansion of the integrand. Other terms in the integrand's
asymptotic expansion will not affect our results.
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1 s pl ikO[pz(‘ he 5’)"’1’3 + i]; .(pl ’ Aif;]
E s == 1 :
R e J ™ (] c (3.4.12)
c’ 2
is asymptotically equal to the two ssddle point contributions. The method

of steepest descent can be used to evaluate this integral if we generalize

the method to include saddle points whizh depend on the large parameter ko(z"),

The dominant term of the asymptotic expansion of the integral

N .ikol(pl,k‘)

1=I dp (3.4.13)
1
§.D, o, e
“where
'(Pl.k‘)=pz(z+s’)+px+ Tl:- t(pl.(A)if) (3.4.14)
o

and the path of integration is the steepest descent path, S.D.P. is given by
ik #(p,_,k)
I~ik°-iG(0)o o Tls'o (3.4.15)

where

” #Hn/4
G(0) = t[pl. /(p.pz,)][Zn/ K (pl,H}e W ; (3.4.16)

Here we denoted the second derivative of #(p, ko) with respect to p, as i'(pls)
and have assumed there is only one saddic point, Py’ OO0 the S.D.P. The
choice of the + or - sign depends on the direction of the path and sign of
l'(pl'), The above evaluation is good enly if no singularities of the iniegrand
approach the saddle point as ko becomes large. For the saddle points treated
in this paper this is the case as is shown in Appendix B.
The asymptotic evaluation of (3.4.12) i, now performed. For L going to |
sero, we can identify the contribution of the lowar saddle point as the lateral ] 1 ‘

wave, while that of the upper saddle point is the reflected wave. This 1

S N S ____*
| ~
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identification will be retained for arbitrary values of L, i.e.;

E,"' EL + Er (3.4.17)
where
ik I'.. (z+2')4n x +k 'lﬂu N :(A)éﬂ‘h in/4
o' ¢L" T L o Uil J
plLe
E =
L i )
gz’ | 2 (ziz’, x ) 1 ]' t
22n)7p Py [pL Py Py (ps 3) k “("u,' (A? )
2L L
(3.4.18)
and
ik [p (z+2')4p x +k'l¢(p () 1)]4» i 3n/4
ol 2r r o 1r’
plr .
E =
r

) gtz x 2 z+z x 1
2P 5, "p. " Pir3 t 3 )+ ke V(ese s ) o
< ¥ Par pr

(3.4.19)
with y* being the second derivative af § with respect to P, The positive sign

has been chosen for plr in (3.4.6) and

$
_ D . « 2 e o2
(1) _ 2 ¢ - 2 ¢
Pir “Pir » Pyp ° (@ - plr) » Pp ” (el plr) :

Since t'(p“_, (A)é‘l')/ko ~ 0 (k;l) for all T, it can be neglected in (3.4.18) and

(3.4.19) if only the dominant term of the asymptotic approximation is desired.

It is interesting to see how these integrals reduce when r is in the range
where the saddle points can be obtained by the method of successive approxi-

mations, f.e., (3.4.7) and (3.4.8). The contribution from the reflected wave

part of the integral is
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iko[pz (z+z )+px‘hk t(pl » (8) 7)]4»1:1/4

In,_le
E &' : (3. 4. 20)
" e, [ 2o el x )t
< Pol 7, p. Pir \ 373
2r ‘r er i

wiwre
= (x 2A-(z+z')2 ‘l? .

Thie is the same contribution one would obtain from a sharply bounded half ]

space problem except for the additional phrse term. When the method of

successive approximations is applied to EL’ we find A

NI,

1
E - (3. 4. 21)
L /2
(2m) zs(llzol.p)3

14 % ik Ai(z+z')+(r1)ix+ ko.lt[(A)iT]]+i3n/4
4

where

o

2
J@t] = vo. @t - ztan“" L A2t 1) g v/Z)‘ (3.4.22)
T(A)'T (v/2+1/2)

and

_mlasecPnvizr iz iyt vianse)

At watarsa) gec (1v/2 LrG (3.4.23) "‘
Pj=0 4tan (mv/2) “(v/2+1)+7 AT (v/2+41/2)
Equation (3.4.21) in the limit of small v reduces to
cll /4 lko(A (z+z’)+ ti’g +i3n/4
EL" X3 Y2 y T <<l |, (3.4.24)

(2m"° 4 (k L)

This is the same as a lateral wave on a dielectric half space. On the other

hand, if we assume T is large enough, the asymptotic approximation for the

&
|
ﬁz
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Gamma functions can be used and we obtain the geometric optical result.

It is
ﬂbgll /4y, i i..i(zh";‘.-(zl)éx#ﬁL(a)é}# in/4
E - —3 —e . (3.4.25)
2(28)°L_(x L )
P o p

The lateral wave amplitude, A[(A)i'r ] and phase, t[(A)éT], have been
plotted in Figs. 3.5 and 3.6 respectively. The straight line (shown dotted)
appearing in both graphs is the approximate solution when the transition is
slowly varying with respect to wavelength. The dash-cot line is the approximate
solutior when the transition region is small compared with wavelength. In this
case the reflection coefficient has been approximated by the first few terms

of the Taylor series expansion of T about 7 = 0, i.e,

2
_ PP, 2ibp p,p, (P,#p ¥+ p
_.2 1 2 2 12MV2Z2 ) C TZ T <<l (3.4.26)

EEN (Pz’“"i)z T- (pzt m)’ ’

where
2
v = 2A1n2+()(pl ).
The lateral wave contribution to each term in (3. 4, 26) was found and then these
three lateral wave con‘ributions were -1t in the form of (3. 4.21) to give an

3

approximate lateral wave amplitude A.[(A)é‘f] and phase V[(A) T] g

3.5 CONCLUSION

For purposes of investigating the high frequency reflected field from
the symmetrical Epstein laver the homogeneous half-space, z 3,0, divides

naturzlly into two regions: first, the region between the z axis and the
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caustic(Fig. 3.2) where the reflected field is exponentially small and ,

second, the region to the right of the caustic where there are two major
contirubtions to the field at each point. The first of these contributions is

the reflsctsd ray contribution , (3.4.20) , whose amplitude variation witi
frequency is koi . The frequency dependence does not change as T is varied.
The second field contribution to the right of the caustic (3,4.21) has an ampli -
tude which is dependent on T . For small 7 the contribution approximates a
lateral wave on a sh=vp interface whose amplitude dependence is (koLp)"Nz .
The caustic in rig. 3.2 provides the natural boundary for this contribution
since for small T it coincides with the critically reflected ray in th.: sharp
interface roblm>. When 1 becomes large, this secund field contribution
changes cha.=cter from a lateral ray to a reflected ray contribution. The
amplitude dependence now has a (kol.l,)i variation. Approximate forms of the
seco.d contribution are given in (3. 4.24) and (3. 4.25) fcr small and large 7
respectively. An enmi?,ztion of these two expressions shows that the lateral

distance dependence Lp' remains unchanged as T is varied.

The two field contributions to the right of the caustic correspond to the
rays through each point in this region. In the homogeneous region the rays
that make up the caustic are the rays that correspond to the contribution E L
given in (3.4.21) . The rays that form the caustic which approachzs the z=0
line asy.nptotically correspond to the contribution Er » or (3.4.20). Identi-
fication of contributions corresponding to rays that pass near the focus is more

difficult and must be considered when L is small,

In Chapters 1 and 2 we found that a lateral wave was excited on the layer
for all values of r. This lateral wave changed its amplitude dependence on

frequency from (koLp)"a/2 to (koLp).7/6

for the linear layer and from (koLp)- R
to (koLp)'l for the parabolic layer as 7 went from small to large values. This

contribution, however, always remained a diffraction effect, not predictable by
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classical geometric - optics. In the Epetein transition treated in this chapter

the lateral wave is excited for small v but as T becomes large this contribu-
tion becomes a reflected wave, which can be predictable solely on the basis of
geometrical optics. This shows that the added continuity of the dielectric trans-
ition has a marked effect on the behavior of the lateral wave. The transition
chosen in this chapter has the drawback that it has an infinite width, This has
the effect that a ray which emerges from the inhomogeneous medium, having
traveled a large distance along the interface, penetrates deeply into the strati-
fied medium. It would e of interest to investigate transitions with a finite width

but more continuity than the layers treated in Chapters 1 and 2.
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CHAPTER 4.

THE DOUBLE EXPONENTIAL TRANSITIiON LAYER

4.1 Introduction

In the last chapter the reflected fields from half of a symrnetrical
Epstein layer were investigated for arbitrary layer thickness. When the
layer thicknese was large in comparison to wavelength, the reflected field
was composed of geometrical-optic rays forming a two branched caustic
which met in a cusp. As the layer thickness decreased, a portion of these
reflected waves changed character and formed a lat:ral wave.

As the next step in our investigation of the reflected field from
transition layers, it would be ideal for us to study a dielectric profile that
is completely continuous, i.e., one having all derivatives of ¢(z) continuous
for ~e<g<o», The Eplteinu) transition layer is an example of such a profile
but the asymptotic properties of the wave functions have not been investi-
gated in enough detail to make the problem manageable.

Since this is not possible at present, we will study the double exponential

medium instead. This transition is composed of an exponential function which

approaches ¢. as z~-o for z<0 and an exponential function which approaches

1l as g~»for 1z_>0 . At z=0 the profile and its derivative are continuous. The
double exponential profile iz similar to the Epstein profile since they are both
composed of inhomogeneous medium for all z. The two are difierent since
the double exponential medium is not completely continucus for all z, In fact,
the double exponential medium has a discontinuous zecond derivative of €(z);

this was the case for the symmetrical Epstein iayer considered in Chapter 3.

In this chapter we shall: first, evaluate the reflected fizlds when the

transition is thick compar=2 to wavelength, and second, evaiuate the reflected

Tl st Rae S35
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NN

20

fields for arbitrary transition thickness where the source and observation
points are many transition thicknesses from the layer. We will determine
if the lateral wave in this medium changes its character as observed in

Chapter 3 and ncte what effects occur from the placement of the source in

an inhomogeneous medium.

LAY PO T AYILTIPTS 1 oW1t e e

A TP

4.2 Statement of Problem and Formal Integral Representations

Consider a dielectric profile given by

e

l-[[_\.fz] e-Zz;’L , 23>0

e(z) = . A =1l-¢ (4.2.1)
€ +[A/2]e722/1‘ : z<0 !

R

where an electric line current source is iocated atx=0, z=2z', z'>0 and
parallel to the y axis, It is assumed, as before, that the e-m’t time
dependence is understood. Because of the source location only the y

component of the electric field, Ey , is excited and it obeys the equation

L 2 2
i 4 v 4y Pez) TE =- sx) 6(z-2) (4.2.2)
E', [dxz dzz o ] y .

The source magnitude has been adjusted to make the coefficient of the delta

function -1 and is given by Eq. (1.2.2). Since the medium is uniform in the

x direction, it becomes convenient to introduce the transformation

A TSR T R ST NPT AT DRTE IR R08 RN O 150 1Y G NG AR TRa R ey

ko + @ ikop
| E= o I ¥(z,p) e dp (4.2.3)
¥
g into Eq. (4.2.2). The rasulting equation for y(z, p) is given by
L
: a’ 2 2
: [S5 + X (-] ¥(z,p) =- b(z-2") (4.2.4)
dz

h where (z, p) must obey the radiation condition as z =%® , The above




-94-

equation is a one dimensiunal Green's function problem. The Green's

function ¥(z, p) is given by Friedrnan(27)as

v,(z) ?Z(z>)
W(v,.¥,)

¥(z,p) = (4.2.5)

where ';*2 and vl are homogeneous solutions of Eq. (4. 2. 4) which satisfy
the radiation condition at plus and minus infinity respectively. The notaticn

z means that z _ is equal to the lesser of z or z’ while z, mheans thatz_ is

greater of z or z' . The denominator of Eq. (4.2.5) is the Wronskian of az
and i;l which is defined by :

Wb, ¥,) = ¥,(z) dy, (z)/dz - ¥,(2) dwz(z)/dz . (4. 2. 6)

We will now restrict ourselves to finding §(z, p) in the region z >0,

Upon introducing the dielectric profile €(z) for z>0 into Eq. (4. 2.4) and
(28)

uging Abromowitz"' ’,we find that the homogeneous solution wz(z) is given by

¥,(z) = J, (-ile'z”‘). z>0 ‘ (4.2.7)

2

where Jv(z) is the Bessel function of order V and argument z . The symbols

v, and A are defined by

2
v2=-i'r../ez-p . k='r,/§ o T=k°L, (4. 2.8)

The solution Wl(z) is given by

z/L) L 2<0

AJ (Me
Y1
wl(z) = ' (4.2.9)

/

J (-ile-Z/L) + va (~ike ® L), z>0

-V, 2

‘ q L
where A is constant independent of z, v, T -ir J €, -P and
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(-i) T4 () - i3 (M) T (-i))
2 V1 Vi ™Y,
J'vz(-m) Jvl()\) - 1J’V1()\) J'vz(-ﬂ.\)

J-v

T=- 5 (4. 2.10)

The prime over the Bessel function indicates differentiation with respect

z/ L

to the argument. The solution 3, (Le ) satisfies the radiation condition

'Z/L) and J.Vz(-ix e'Z/L) are two

as z —- = while the functions .IVZ(-iX e
independent homogeneous solutions of Eq. (4. 2.4) for z>0 . A linear comb-
ination of these solutiors is used for wl(z) in such a way as to make wl(z)

and d\bl(z)/dz continuous at z=0. The Wronskian W(wz, wl) is found to be

Wik, 0y) = (2/7L) sinv, T (4.2.11)

(29)

by using Abramowitz . By substituting v&ll(z) , wz(z) and W(tlrz, \111) in
Eq. (4.2.5) and then using the resulting expression for ¥(z, p) in Eq. (4. 2. 3),

the formal integral representation for Ey is obtained. It is

ik oPX
[sm(ﬂv 337! [-ixexp(-z</L)]JV [ -ik exp(-z /L)] dp
2

= L
E’ I

lb—1+

(4.2.12)
ik oPX

J’VZ[-i)\ exp(-z_/ L ):i Jvz[ -ik exp(-z /L)] dp

{.

+ I
4 .I sm(\) Tr)

L4

For these integrals to be completely defined, the square roots

Y YA
pl—elp ’ PZ“ z-p

must be properly defined on a four sheeted Riemann surface which is shown
in Fig, 1.4, The multivalued character of the Bessel function need not
concern us since the integration variable is not contained in the argument

of any of the Bessel functions in Eq. (4.2.12).
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If we allow 1 <0, Eq. (4.2.12) reduces to
. ’
- 1k°(p2|z-z | + px)

E =- _‘_ I < dp
y 41i o P,
, (4. 2.13)
+e 1k°[p2(z+z ) +px] p.-p
I e dp , T= 21
M le P PP

We see from the last equation that as 1 ~0, or as the layer becomes thin
compard to wave length, the formal integral representation, given in Eq.

(4.2.12), reduces to the half space integral representation.

As in Chapter 1, the branch points at p=t,./::—l are now removed by

means of the transformation
/ 2 / 2
P = el-pl ' Pl = /A4 pl .

This transforms the integral in Eq. (4. 2.12) to

P

.
E =- <[ —
y 4C‘I;P8m("\'z) 5

- ik px

J’_V [-il exp(-z</L)JJvz[-il exp(-z>/L)Je ° dp1

T . 4.2.14
P, r 1k°px ( )

T . 9 .
B Zg psin(nvz) Jvz['ﬂ‘ exp(-z</L)J Jvz['l)‘ e"‘P(-Z>/L)] e dpl _

where the multivaiued functions p,pzare defined on a four sheeted Riemann

surface. The first two sheets of this surface are shown in Fig. 1.5and 1.6.

For reasons that will become obvious at a later point, i :zould be
advantageous to obtain a different form of Eq. (4. 2. 14). This can be done by

using the relation

I f2) = N I, (z) - isin(mv) ul?)

Y (z) (4.2.15)
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in Eq. (4.2.14). The resulting integral representation is

px
- ’ii'{: H‘z’[ A exp(-s /L)] 3, [-n.xp(-z IL)] ap,
: (4.2.16)
{ P12 tk px
-4I-£ —fs [-uup(-z IL\]J [ thexp(-z_/L)]e ° dp,
A Bor nf,z’(-m.t\; M -0, () H, (-10)
e e— T E— 4. 2.17)
T, (N3] M -, M7, (-1
2 1 i Y2

4.3 Asympiotic Evaluation of Integral Representation for large kgL

4.3.1. General Consideratiops

Since the integral representations for Ey which have been érelented in
the last section are too complicated to be integrated directly, approximate
procedures must be used to simplify the integrals further. If we assume
that the medium is slowly varying with rzspect to a wave-length and that the
observation point is not near the source, we can asymptntically approximate
the integral representation, To be more specific : if the medium is slowly
varying, i.e., k°L>> 1, the uniform asymptotic approximations to the Bessel
functions can be used to simplify the integrand of Eqgs. (4. 2. 14) and (4. 2. 16).
By using this simplified form of the integrand, the integrals in Eqs. (4. 2. 14)
and (4. 2.16) can by asymptotically approximated by the method of steepest
descents for large kor where r=sz +z2 .

Before proceeding with the asymptotic evaluation of the exact solution,
the methods of geometric-optics will be applied to.the problem in the next
section, 4.3.2. This will allow us to represent the field as a sum of ray
contributions. The ray family will be investigated in detail with its assoc-
iated caustics and foci. A comparison of the field contributions, obtained
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from the asymptotic evaluation, will be performed in section 4. 3.3., and
the method of geometric-optics will clearly distinguish the geometric-optic
from the diffraction effects.

4,.3.2 Rays in a Double Exponential Medium

a. Descriptior of Ray Regions

As stated in the last section, the methods of geometric-optics will now
be applied to the double exponential medium. We will assume k°L>>l sinc¢
the method requires the medium to be slowly varying with respect to wave-
length. By using this method, the field can be characterized by a family o1
rays emanating from the source. In this section the structure of this ray
family will be studied including its associated caustics and foci. Also a
detailed investigation of this ray family will be made 2s L~0 while keeping
koL large. This limiting ray family is important since a comparison, with
the ray family for a sharp interface problem, gives important clues to the
changing nature of the lateral wave a L increases.

The ray trajectories can be obtained by an integration of the ray

equationi.e.,

x=# .[' L€4’9-—7 (4.3.1)

where the plus and minus signs are used for rays with positive and
negative slope respectively. The symbol p, used above, is the ray para-
meter and is related to the initial ray angle Go by p=vle—(;7-)-sin6° ; the angle
90 is measured between the tangent to the ray emerging from the source and

the line z=2’, x>0, and is considered positive in the clockwise direction.

The rays divide naturally into three types : direct, reflected and trans-
mitted rays. The direct rays are restricted to three regions of the x-
plane as shown by the Roman numerals in Fig. 4.1. Region I is bounded by
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a portion of the z axis and the glancing ray, i.e., the ray emitted from the
source at §=0. The name, 'glancing ray’”, stems from the fact that the ray
just glances along thc interface in the limiting case of an abrupt interface
(L-0). The glancing ray'as trajectory is given by

-2z'/L %

(1-02 e ) cosh ~}e (-2')/ 1Ly

[4
A,2 e-z /L \ )

x/L = (4. 3.2)
Region II is bounded by the locus of turning points and the critical ray., The
equations, describing the locus of turning points, are given in Eqs. (4. 3. 4)
and (4. 3.8) and will be discussed in detail at a later point. The critical ray
is emitted from the source at the angle ec where ec is the critical angle given
by ec = sin-l./_:?_em . This ray is found by integrating Eq. (4. 3.1) with

p= JEI Its ray trajectory is

E [cosh.l (erz‘/L) - cosh.l '(:./Z_ez/L)] » 220
x/L = 4. 3.3)

The direct rays are not the only rays existing in regions I and II. They are,
however, the only rays emitted directly by the source into regions I and II.

Region III is bounded by a portion of the x axis, the zaxis and the critical ray.

Direct rays emitted in the angular sector 0<6<6c are called returning
rays after they pass through the locus of turning points. These returning
rays have z coordinates that tend toward plus infinity as the observation
point becomes far from the source. Direct rays which have been emitted
in the angular sector 6C<9§ m/2 and have passed through the interface
(z=0) are called transmitted rays. These rays have z coordinates that tend

toward minus infinity when the observation point is far from the source.

Because of the monotonic character of the dielectric profile, the direct

e o st &
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rays never cross one another; the sam= is true for transmitted rays. As a
result, these two ray types can never generate caustics or foci, therefore
making further analysis of these rays unnecessary. The returning rays, on

the other hand, do cross one another and must be studied further.

The returning rays can be subdivided into two ray types: those rays with
turning points in the upper half space and those rays with turning points in the
lower half space. The two ray types are divided by the tangent ray which has

an initial angle denoted by at as shown in Fig. 4.1.

b. Turning Points

Before considering the caustics formed by the returning rays, an
investigation of the locus of turning points will be useful. The locus points,
ztzo, are found by integrating Eq. (4. 3. 1) and noting that p=J(~:(_th. The
resultant equation is

2z /Ly =z /L (z'-z.)/L
xt/L = . J27A [1-(A/2)e ] e t c:osxh-l [e t ]

, ztEO . (4. 3. 4)
Some interesting teatures of this curve, as illustrated in Fig. 4.1, are:
first, the locus intersects the source point and has a zero slope at this point;

second, the curve has one maximum (dxt/dzt= 0} when

¥/
e 22 on™t 2l 12 (4. 3. 5)

and is monotonically decreasing when inequality (4. 3.t) is not fulfilled.

)

The location of the maximum will be denoted by (xtM' Zo\ 0

If (z'-zt)/]_,<<l or (z'-zt)/L>>1 , Eq.(4.3.4) can be simplified. By

use of the former approximation, the locus of the turning point reduces to

x, ~ Zﬁ/(z'-zt) L/b e® /L . (4. 3. 6)
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This describes the section of the locus of turning points near the z = z’
line. When (z’- zt)/L>>l » on the other hand, we obtain the approximate
form of the locus of turning points in the region z’ >z >0 but not including
those points close to z'. This approximation is

-Zzt/L1§ zt/L
x, = J2h [l-(A/Z) e J (z'-zt) e . (4. 3. 7)

If we now assume that L is small, we see from inequality (4. 3.5) that
the lccue of turning points has a maximum. As L-0 the x, coordinate of
this maximum texds toward infinity. The approximate forms of the locus
above and below the maximum are described by Eqgs. (4.3.6) and (4.3.7)
respectively. As L-0 we see from Eq. (4. 3. 6) that the portion of the locus
above th tends toward the straight line z = z' with x>0, while we see from
Eq. (4. 3. 7) that the portion of the locus below Zot tends toward the straight
line z =0 with .\/ZL-S(I«AIZ)é z'<x<=o, A sketch of the locus for small L is

shown in Fig. 4.2 .

The turning points when z <0, are obtained in a similar manner as those

t
for zt>0, i.e., by integrating Eq. (4. 3. 1) but now z, must be considered as
negative. The resultant equation is
/L = (p/p,) {coah-lrm ez'/Lj-cosh-l[ﬂZ\- i)
xe P/P; [V#rpe P2l
(4. 3.8)
-1 =
+ (p/lp, 1) coshr [|91|J27A_j

with 4z /L

lp,| = VBTZ e vt (4. 3. 9)

As would be expected from the continuity of the dielectric constant
and its derivative at z =0, the locus of turning points and its derivative
are also continuous there. As we approach the critical angle, i.e., Ipl | -0,

we find from Eq. (4. 3. 9) that 2= Using this limit in Eq. (4. 3. 8) show~
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Sketch of the Locus of Turning Points for Small L
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that the locus of turning points approaches the critical ray, EqJ{4. 3. 3),
as z,~- . The locus in the region zt<0 has one extremum when inequality

(4. 3.5) is satisfied, and it h2s no extremum when it is not satisfied.

For small L inequality (4.3.5) is satisfied, and the locus of turning

points has one minimum which is given asymptotically by

x, = e bz + o) 2y " oLaL?) . (4.3.10)

In the limit of L.-<0, we see xtrn -._/‘:I/A 2z’ and ztm-'O . If we assume
|zt|/L >>1, the portion of the locus, that approaches the critical ray, can
be approximated by

|z |/L
x, ~ /% 7Bz’ + /e 28 Le t L. (4.3.11)

If we let |ztl ~ Lln(B/L), then X, becomes

x ~ e bz’ +nfe w8 {4.3.12)

t

K 8 is varied, all values of xt in the interval @z'<xt<° are obtained
with the exception of the region close to the point x = @z' . In the limit
of small L, this section of the locus of turning points tends towards tae
interface. All 2, of order larger than L1ln(8/L) lead to X, which approach
infinity as L -0 .

The only section of the curve not investigated as yet, is the section
between the minimum and the z, = 0 crossing point. Since |p1 | is non zero
from Eq. (4.3.9) we see zt-»O as L0, and as a result, this section of
the curve also approaches the interface as L.~0. To summarize, all
portions of the locus of turning points, which lie in the finite x - z plane as

L-0, approach the interface and the z =z’ line.

e e e =t
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c. Returning Rays, ztz 0

As mentioned previously, those rays, that are turned by the medium,
cross one another after they have turned. This leads, as shall be seen, to
the formation of a caustic. In this section we shall investigate the section

of the caustic formed by those returning rays with turning points, z_ >0 .

t
The ray equation for returning rays is found by choosing the minus sign
in Eq. (4. 3. 1) and integrating from z’to z, and then, choosing the plus sign

and integrating from z, to z. The resultant ray equation is

ol (p/pz){cosh-l [pz NS /L] ¥ cosh'l[pz./zm eZ/L] j (4.3.13)

To find the caustic, the constraint equation will be needed. This equation,

found by taking the derivative of the above equation with respect to p, is

L. T -1- L 2 ‘
cosh L PV 2/A eZ/ g cosh Lpz./Z/A ez/ ]=Pp pz[llpz(z ) + llpz(z)]

(4. 3. 14)

where

-2z/L%
]

p,(2) = [p5 - (4/2)e . p, = limp,(z) | (4.3.15)

2 @
Since both Eq. (4.3.13) and Eq. (4. 3.14) are transcendental in Py it appears
impossible to eliminate the parameter directly between the two equations and
obtain the caustic directly. However, .t is possible to obtain an asymptote to

’

the caustic in the region where (z-z')/L>>1 and pz(z') e” /L<<l . By using
these relations to sim plify the constraint equation, a relation is obtained
between z and pz(z') . When this relation is substituted in the ray equation,
the asymptote obtained is
2z//L i ] %

z ~ x[(Z/A) e + z' - Lln2 , (4.3.16)
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This asymptote is a straight line which is valid wher z>z" .

Another general feature of the caustic i5 its intersection with the
line z=2'. It is shown in Appendix D that the ray passing through an
extremum of the turning pcint locus also passes through the caustic at
z=2z'. Thus, if the rays forming a caustic have a locus of turning points
with an extremum, the canstic must cross the line z=z'. The condition that

the locus of turning points has an extremum for ztz_ 0, as expressed in

Eq. (4.3.5), is

J1-e 2T coen™ (2 2) > 12412 (4.3.17)

and, if satisfied, the section of the caustic for z >0 crosses the z' =z

line once.

Because of the complex analyt.c character of the ray and constraint
equations, a GE 235 computer was used to plot the caustic for several
different transition thicknesses, L. The basic procedure for doing this was
to pick a particular value of P, and then solve the constraint equation for
z. Since this equation is transcendental in z, a Newton Raphson method
was used to find z. The complete caustic has been plotted for L=10,1,.1

and is shown in Figs. 4.3,4.4 and 4.5 respectively.

For L.=10,1 the caustic consists of two branches meeting in a cusp.
The cusp, having the ray with z = 0 pas:ing through its tip, is not actually
a regular cusp since the focal condition is not satisfied at its tip. The
cusped nature of the caustic is instead forined because of the discontinuous
character of the dielectric distribution at z=0. The lower branch of this

caustic, having z, >0, is the caustic described in this section.

The focal condition states that the second partial derivative of the ray
equation with respect to the ray parameter must be zero at the focal
point,
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In Fig. 4.5 the structure of the caustic changes because of the
appearance of two new cusps : one below the x axis and one above. Both
of these new cusps satisfy the focal condition at their tip. An enlargement
of Fig. 4.5 in the area of the cusps is shown in Fig.4.6. We note The
regular cusp below tiie x axis is shown clearly in this figure, while the two
cusps appearing above the x axis occur too clos: td one another tuv be distin-
guishable. To rectify this situation a detail of Fig. 4. 6 has been plotted in
the region of these two cusps. This detail is shown in Fig.4.7. The coord-
inates used in this figure are RT and RL. The quantity DL is the distance
measured along a straight line passing through the tip of the irregular cusp;
DL is equal to zero at the point the straight line passes through the cusp's tip.
The slope of this line is the same as the slope of the caustic at the irregular
cusp's tip"r . The quantity RT is measured perpendicular to DL as shown in
Fig.4.7. The coordinates of the irregular cusp's tip, (xF, zF) , and the angle,
8, that the DL axis makes with the x axis are given at the bottom of Fig.4.7.

Ar examination of Fig. 4. 7 shows that the caustic forms a bow tie
configuration similar to that observed in the linear layer (Chapter I). The
portion of the caustic tending toward the lower part of the graph is composed
of rays with turning points zt<0 , and, if extended, it would connect to the
cusp shown in Fig.4.6. On the other hand, the portion of the caustic that
appears to coincide with the DL axis corresponds to rays with turning points
zt>0, if extended, it would produce the lower branch of the caustic shown
in Fig.4.5. We also note that the irregular cusp occurs at DL=0=RT as

would be expected from the definition of the coordinates.

The slope of the caustic exits at the cusp's tip and is unique.

s - e
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As L becomes increasingly small, various approximations can be
made which enable us to simpiify Eqs. {4. 3.13) and (4. 3. 14) that represent
the iower branch of the caustic. First, we note from section 4. 3. 1b that
for zt>0 and L small, a maximum of the locus of turning points always
exists and as a result, the caustic crosses the line z=z'. An asymptotic
approximation to the caustic can be obtained below this line. If we assume

(z'-2z)/L>>1 and (2’- zt)/L >>1, the constraint equation, 4.3.14, reduces to

- -2z /L_
z-z =~ L3 i1-(2/2) e t J'Z/Z(z'-zt)z, (4.3.18)

By using the above approximation in the ray equation, we find

2z /L -3
x = [(z/m . U -1_3’

(z’ - zt) . (4. 3.19)
An examination of Eq. (4.3.18) as L -0 shows us that z ~z,. Equation

4,3.19 divides naturailly into two cases: first, those z,~a L which lead to
(Z/A-l)% z'<xt<°= while z, with 2 weaker dependence on L have x, cooxd-
inates which tend toward infinity as L -0. With the above information and
with the previous knowledge that zt-<0 for finite xt, wa conclude that this

3
A comparison of Figs. 4.3, 4.4 and 4.5 will show how this limit is approached

as L-0,

portion of the caustic coincides with the z=0 line for (2/A-1)° 2’ <x<=,

The original asymptote, Eq. (4. 3.16), still holds when L is small.
From Eq.(4.3.16) we see that any z>z' has a corresponding x coordinate
which tends towards infinity as L-+0. To sumamarize in the limit of L~0,
a portion of the caustic lies along the x axis, while other points on the caustic,

corresponding to ncn-~zero z values, have x coordinntes that lie at infinity.

The focal condit on for this section u{ the caustic is

3 [l/pz(z') + l/pz(z)] + pz[l/p;(z') + l/p:(z)] =0 (4. 3. 20)
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where PZ(Z) is defined in Eq. (4. 3. 15). As can be seen this equation is
never satisfied for real ray parameters and thus no foci exist on this
section of the caustic. In pa.ticular this equation is not satisfied at z, = 0
which corresponds to the ray that passes through the tip of the irregular

cusp.

d. Returning Rays, ztfo, z>0

The rays with turning points, z, <0, penetrate into the medium z2>0.
Their ray equation, as in previous cases, is obtained by an integration of

Eq.(4.3.1). The ray equation is

x/L =(pfpz){'2°°°h-1[~/273pz] + cosh”! [ﬁﬁ P, ez'/L] (4.3.21)

+ cosh'l[JZ/Apz eZ/L] }+(zp/|p1|)cos'l[lplI,/Z/A:, 2,50, 220.

These rays form another section of the caustic found in the previous section

4.3.c. The constraint equation for this caustic,

0=2 cosh-l[m pZJ - cosh-l[m P, e’ /L] - co:-sh-ll:../—Z/—Ap2 eZ/LJ'

-l =
+(2€1P;/|P1|3)cos [JZ/Z |p1|] +(4p2p2/|p1|2)[p§ -A/ZJ% (4. 3.22)
+pzp2’[p‘g_wz) 2z /L]-é ' [pz i (A/Z)e-ZZ/L:I-%i

was obtained by taking the derivative of the ray equation with respect to P, -
Since elimination of the parameter, P, between Eqs. (4. 3.21) and (4. 3. 22)
seems impossible, the caustic was plotted on the computer by a similar

procedure to that described in the previous section.

SRt
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The upper branch of the caustic shown in Figs. 4.3 and 4.4 is the
section of the caustic whose rays have z, <0, i.e., the part of the caustic
described in this section. In Figs. 4.5 and 4.6, the part of the caustic,
resulting from rays with z, <0, z>0, is more complicated. It consists of
the upper branch, starting at the x axis, as shown in Fig. 4. 5 and the section
between the tip of the irregular cusp and the x axis, as shown in Figs. 4.5
and 4. 6. Since the section of the caustic between the irregular cusp and the

x axis is very small, an enlargement has been made in Fig. 4.6.

As can be seen from an examination of Figs. 4.3 - 4. 6, the general
structure ol the caustic changes as L decreases; however, the irregular
cusp always remains. The analytic behavior of this irregular cusp can be
understood better by noting; first, the caustic and its first derivative, dx/dz,
are continuous at the tip of the cusp, z, = 0; second, as zt-O from the
negative side, z increases for all values of A and L. This behavior gives

the caustic in this region a cusp-like appearance.

As the transition thickness gets smaller, the irregular cusp approaches
the x axis, and two ad. itional regular cusps appear. One of these cusps is
formed from rays with ztfo » 2>0 which are being considered in this section.
The exact location of the focus is difficult to find because of the complicated
analytical character of the focal condition. As L becomes small, the fecal

condition simplifies and an approximate location of the focus can be found.

The general focal condition is

2 2 2
) 4l2lp, 1p“+3¢, (p -A/Z)I
‘pll (pz-A/Z)

(4.3.23)

-3[1/p2(z') + l/pz(z)] - pz[l/p;(z') + l/p;(z)]
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where ;:Z(z) is defined in Eq. (4.3.15). I we assume L is small and zt-O ,

the constraint equation, (4.3.22), reduces approximately to

2L =(1-4/2) [pg - (8/2) e‘ZZ/L] 2

(4. 3.24)
We now let P, " JBJ2+6 where §<<1 since z, is small and use this with
Eq. (4. 3. 24) in the focal condition Eq. (4. 3. 23). We obtain

6

6 = 32JKT§(1-A/2)6 (z')-éL {4.3.25)

We now see that our assumption of small z, was valid when L is assumed

to be small. By using this value of 6 in Eq. {4. 3. 24) we find the approximate
focus location is given by

-2 L3

z = 2(1-8/2)% (z) ) (4. 3. 26)

When L is small, an approximate equation for the upper branch of the
caustic can be obtained by using z/L>>1 and z’/L>>1 in Eqgs. (4. 3.21) and
(4. 3.22). The equation obtained is

23 V-2, U3 23

x/L = ./—7e1 A (z+z')/L + © ;AT (242 (4.3.27)

The use of Eq. (4. 3. 27) in conjunction with Eq. (4. 5. 22) shows that there

are no focal points on the upper branch of the caustic for small L.

If we now consider the limiting case as L. +( we find: first, ihe section
of the caustic between the irregular cusp and the x axis shrinks to zero as
L-0; second, the upper branch of the caustic approaches the line

x=/;;/-5(z +2’) which is the critically reflected ray from a sharply bounded
interface of height A .
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e. Returning Rays z, <0, z<0

The returning rays with z<0 are given via Eq, (4.3.1) by
. - - ’ -
x/L=(p/p.) { -cosh lrJZ/Ap | + cosh ! V278 p e L }
2" | 4 24 L 2 J
(4. 3.28)

Ceaa T ; -1 ' -z2/L™Y
+ (p/lpll)lcos L|p1|~/2/AJ+cos [lpll./ilAe 17,
The constraint equation is obtained by taking the derivative with respect to
P, of Eq. (4.3.28). The result is

0 = cosh™ [VZTBp, |- cosh’l[leA pye” /L_-j +2p’p, (p;-AIZ)é lp, 1

=1 3 =1 -
+(e,p3/Ip, 1*) feos™ [ Ip, | /278 | + cos™ [ |p, | /2TE %/ 1} @s.29

2 2 -2z'/L7- 2 3 27 2z/L 21-
+ppzfp2-(A/2)e = ]hppzlpll L(A/Z)e 2/ -|p1| ]'i.

A ccemputer calculation of this sector of the caustic was made. An examina-
tion of these results shown in Figs. 4. 3. - 4. 6, seems to indicate that if a
focal point does not exist below the x axis, then there exists no caustic below
the x axis. Applying the focal condition to Eq. (4. 3. 28), gives us the second
constraint equation. This equation, in conjunction with Eqs. (4. 3. 28) and

(4. 3.29), enables us to find the focal points. Nothing in general can be said

because of the complication of the focal condition,

When L is small, Eqs. (4.3.28), (4.3.29) and the focal condition simplify
substantially, enabling us to locate the foci if they exist., We find that one
’

focus exists which tends towards the interface as LL~0, i.e., z-‘O,x-u/el;Az

as L-0. The two branches of this cusp tend towards the interface also, as

L-0.
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f. Summary §

The investigation of the rays emitted from a point source in a double
exponential layer has led us to conclude : first, all rays, except the
returning rays, have a simple character; second, the returning rays form
a caustic with an irregular cusp resulting from the discontinuity in the die-
lectric ; third, as L becomes small, two additional regular cusps appear
one below the x axis and one above ; fourth, as L-+0, one portion of the
caustic tends toward the interface while the other portion tends toward the
critically reflected ray; fifth, the focus below the x axis tends toward the
reflection point of the critically reilected ray; and sixth, the two focii above

the x axis tend toward the turning point of the tangent ray as L~0 .

4,3.3 Asymptotic Evaluation of the Formal Solution
a. Introduction

The asymptotic evaluation of the formal solution will now be carried out.
As has been mentioned previously, the integrands of Eq. (4.2.14) or Eq. (4.2.16)
will be asymptotically evaluated for large koL and then the resulting integrals
will be asymptotically approximated for large kor .

b, Asymptotic Approximations for Large koL

The integrands of the integrals appearing in Eqs. (4.2.14) and (4. 2. 16)
contain the following Bessel functions: ‘Iv (-iX e-z'/L) y Ty (-iX e-z/L) ,
2 2
(1) , ., -z/L (2) , ., -z/L c e .
H\,Z (-ike ), H\’Z (-il e ), J\,Z (\) and the derivatives of these functions
with respect to their arguments. A significant simplificatica of the integrands
will occur if the above functions are replaced by their asymptotic approxima-

tions for koL large. These asymptotic approximations need only be known in

a strip-like region centered around the integration path, C.

L
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(30)
Olver has derived uniform asymptotic expansions for J,(vz), H(l) (vz)

v

and H\SZ)(Vz) and for their derivatives when v is large and 'argvl <n/2.
These expansions are valid in the whole z plane when a branch cu intro-
duced along a curve in the second quadrant, as described in Appena £.
Since the asymptotic expansions will be required when argv=- s » Olver's
results have been extended in Appendix E to include this end point. The
extension shows that the same expansions, which are valid when |arg\:| <mn/2,

are also valid whenargv==-1/2, These uniform asymptotic expansions are

23
1, (-ire ¥l - 1} [ 41"12 g]l/“' Ai(|v|2/3§) (4. 3. 30)
2 V) S lew
2 2
1 TFin/3 2/3
H(j)(-ike-z/l')'- Ze alvl K, (oM 23, (4.3.31)
2 v l-w !
2 2
-2z/L 2 1“”§ 11/4 | |2/3
I (=ile " T)~- A (vt (4. 3.32)
vy WZVZT [4|v|2/3gJ i
!_sé)' 4 24mi/3 1"”:. “1/4 £2m/3, (23
ey L o T —L5 T Al v%%e)  (4.3.33)
2 Wsz 4|VI 5
where
v 1 ~z/L
_2_§3/2 - L rEdt . w.(z) =@_ . (4. 3. 34)
N 2 P

2

The branch cuts which define the correspondence between the § and Wy

planes are defined in Appendix E, By using the definition for vz given in
Eq. (4. 2.8), and the fact that the above asymptotic approximations are valid
for Revzzo. we find that these approximations are valid in the first and
third quadrants of the P, plane including the real and imaginary axes.
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In Fig. 4. 8, the regions of validity are shown by shaded regions composed
of slanted lines. No branch cuts due to the iquare root p=.\/€l+‘pl 'Z are

shown in this figure since these particular Bessel functions are independent

of p.

The Bessel functions, given in Eqs. (4.3, 30} - {4, 3.33), have turning
points which are located at w, = 1. The turning point corresponding to
w, = 1 appears in two places on the top sheet of the £y plane as showrn in ;
Fig. 4.8. These two points are located at P, = £ v {z) where vy {z)= (é-*.—’i(z'jf
vz(z)=-jm exp {-z/1,) . The two points corresponding tc the turning point

located at w= -1, are located on the bottom sheet,

7’0 okiain th: as totic approximaticn of J_y,_(-i2 e-ZIL) in the same
ymp PP .

region of validity as described above, we will use the connection formula

-2/ V7ni { -zf -v,T - .M
J’\){-ike z:L.; D2 HL”(-i).e z/L, o 2 Hiz)(-ile z/L} 12 (4. 3.35)

F

2 - 2 2

-

whlere the asymptotic approximaticns giver by Eq. {4.3. 31) are used for
-z/] .

"\(7_,_)“‘1 e 'L) . Since it can be shown that in a region close to the integra-

tion path, C, the second term of Eq. (4. 3. 35) is exponentially small. The

asymptotic approximation te J_y;. (-1 e-z'/L) is giver vy

-\}Z

. - 1. {203 2mi/3 2/3
e e_z/L) ) e]vzin«l—mB rlvzi g} A fe lvzl £)
-V *

2

. . 3. 36)
2 5 i (4 2.56}
Z Z

1 -w

By a similar procedure, the asymptotic approximation for the derivative

of JVZ can be obtained. It is

i .
e . 9V2|ﬂ+4ﬂ1/3 l-w; 14 A’( Zﬂi/3|v !2/3;:)
¥, ke ) - < S e 28 (4.3.37)
2 Wa a|v]7¢ MR

2
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The asymptotic approximation for .‘!.,ul()\) and its derivative can be

found by using Olver's results as were used before.

The resultant asymnrtotic approximations are

r. 2/3.i/4 i, 123
| lv [T ad 1772
3 (A} ~ : (4. 3. 28)
v 2 3
1 Jow v
i 1
ang
el [} 2
2 zowf ] A;ﬂ'ﬁll‘!}f
Il ‘1) ~ e —— 1 3 (4. 3. 3¢)
\ 2
’1 1 ivliJ}f:J vlg

where £ is definec as in Eq. {4. 3. 34) with w, beirg replaced by Wy W, =
-./T’;-I-Z-Iipl . The ragion of validity for these asymptotic approximations is

the upper half of the P plane including the Re P, axis as shown by the
horzizental lines in Fig. 4. 8. The turnirg peint of J"l corresponding to W)= 1,
is located on the Ixnpl axis in the interval 0<Ix‘npl <,/A while the turning

point corresponding to w=- 1 is in the conjugate position.

X The asymptotic approximation to the Bessel functions JVZ J -v, and
H{,:) will be needed in a narrow strip just to the left of the integration path,
C,where 0< Impl <J/A. By making u(s;) of the formula relating different types
of Besse: functions given by Watson ‘"we can show that the asymptotic
expansions, which are valid on the Impl- axis, are also valid in a small strip
tc the right of it. These asymptotic expansions are not valid near the branch

points, P, =+i,/A since the large asymptotic parameter, v, tends to zero

there .

Py applying these same ideas, the asymptoti: approximations for J vy
J'VZ , and JVI are analytically continued to a narrow strip below the positive
real P) axis. As in the case of the Bessel functions of oraer ivz , the asymp-

totic approximations of Bessel functions of order V,» are not valid in a small
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circular region about the origin of tne p, plane.

The aporoximate forms of the Bessel functions previously mentioned,
can be simplified further by using the asymptotic formula for the Airy
functions . This is only possible when the integration variable P, is not
ioo close to a turning point of the particuiar Bessel function under consider-~
ation. This has been done in Tables 4. 1A and 4.1B for values of P along
the integration pathC. These formulae, however, can be analytically
continued, so that they will be valid in a narrow strip, centered arcund the
integration patk, The asymptotic approximations presented in Table 4.1A
and 4.1B are valia in the neighborhood of Py = 0 and P, = 0. Ailthough Olve?;sz)
uniform expansions break down at these points, the Debys approximations ,
which utilize the large parameter %, can be used to extend the range of
validity of the approximations appearing in the tables to include the rneighbor-

kood ofpx=(}and p2=G.

c. Approximation of Formal Solution

The asymptotic evaluation of Egq. {4. 2. 14) or its alternate, Eq. (4.2.16)},
will now be performied with the a of the asymptotic approximations obtained
in the last section. Before proceeding with this evaluation., we would like to

note some important characteristics of the integrands.

The integrands as expressed in section 4.2, are completely defined.
There is no need to consider the multivalued nature of the cylinder functions
contained in these integrands, since the cylinder functions are only multi-
valued with respect to their arguments whic are a constant along the path of
integration. These cyiinder functions have turning points located on the Im P;
axis at Imp1 = tvl(z<) , vl(z>) , ivl(O) where vl(z<)_>_vl(z>)_>_ vl(f.‘) . The
asymptotic formulae, used to approximate the cylinder functions, change

characteristics upon the passage of the integration path through a turning point
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and, as a resuit, the turning points separate different regions of importance

along the integration path.

The asymptotic approximation of the formai solution given in Eq. (4. 2. 14)
along interval Re P, = 0, v (z)) < Impl <® js carried out on the top sheet by
introducing the approximate forms of the cylinder functions found in Tables

4. 1A and 4.1B, into the two integrands and then integrating these integrands.

Because cf the exponentially increasing nature of J,,, and J_,, in this
region, both integrals in Eq. (4. 2. 14) are large for iarge“koL. Since the
difference of the two integrals bezomes indeterminate as koL-ow, the repre-
senfation, given by Eq.{4. 2. 14),cannot be used over this portion of the integra-
tion path. To alleviate this difficulty, we use the alternative representation
given in Eq. (4.2.'9). Proceeding as before, we find that this portion of the
integration path gives an exponentially small contributiun tc the field for all
observation points with z>0. The integration path was deforried a small
amount around the branch cut in order to facilitate the evaluation of the
integral. The same portion of the integration path, on the second sheet, gives
a similar result since the asymptotic approximations used in the evaluation

remain the same (they are indep-~ndent of p )},

The original representation for the field, i.e., Eq.(4.2.14), will be used
to evaluate the contribution from the remaining portion of the integration path.
The only motivation for introducing the alternate representation, 4.2.16, was
to aileviate the difficulty encountered above . Before proceeding further we
shall divide the field Ey , as represented in Eq. (4. 2.14), in a sum of its

individual integrals, i.e.,

E =E . +E
r

. = Epy (4. 3. 40)

Ref

where

Epie = | ip(Pc 250080y« Ep o = [fple iz,,p))dp (4.3.41)

J
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with
-z_[L_ -z_/L_ ik px
, T - < 7 .
tle vz, b)) L I, [-ine 1, Cofe O ]e (4. 3.42)
! 4p sin(ﬂvz) 2” - Vet

and _

T, T -z_/L -z_/L_ ik px

. 1 F - < 7 r. > - o

fR(z<,z>,pi) - _‘;Qsin("v ) J_‘) L il e ij L-lke e (4. 3. 43)

“ 2 2 2 >
The choice of symbols ED;rand ERef was motivated by the fact that the

evaluaticn of EDir yields the direct ray contribution, whiie the evaluation of

ERef ¥

yields the returning ray contributions.

The asymptotic approximations for J,, and J, , listed in Table 4, 1A,
2 <>

are now used to approximate fD(z< yZ
path from p, = J& on the top sheet to

grand is approximately given by

LS

f P

> pl) along the section of the integration

P, = & on the second sheet. The inte-

‘moLD(pl)

fn(z<nz>npi) - 411
where

For large ko’ the main contributions

saddle points of the integrand, i.e.,

{4. 3. 44)
1/4 . 2 2 1/4
{ 2(z>)]

ni 2-v2(z 3] -v
t'-pz 2V« Lpz

‘ upper sheet
- lower sheet .

to E_ . will be in the vicinity of the
Dir

where dLD(p, )/dp1 =0. By performing

the indicated differentiation on Eq. (4. 3. 45), the saddie point lecations are

given by
R
x=+L | ADICEL S

\‘?'2(z>) t\/pz -t

+ upper sheet
. (4. 3.46)

- lower sheet
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The above saddle point equation is the equation for the direct rays when

the plus sign is chosen, A sketch of the different ray regions has been
drawn in Fig.4.9. The basic regions defined in this figure are valid when

L is not too small. We have drawn in the portion of regions B and C,
appearing below the z =z’ line, but these may not appear for some parameter
ranges. When L is small, as we have seen in the section on rays, an add-
itional cisp is introduced into the region just above the z=0 line. The
sketch of Fig. 4. 9 cannot be used to find the ray regions in the immediate
vicinity of this cusp, but the other ray regions, with minor modifications,

remain essentially the same for small L.

By using the nomenclature of Fig. 4. 9, these rays are located in regions
A,B, and C of the x-z plane. Since the rays do not cross, only one solution
of Eq. (4. 3. 46) exists for each point in the above mentioned regions. The
saddle point equation, 4, 3. 46, has no solutions on the lower sheet for any

location in the x-z plane.

The niethod of steepest descent can now be used to evalvate the integrel
{EDir] asymptotically, Without going into detail, we find that the integral
is approximated bv the contribution due to the direct ray saddle poiy't, when
the observation point is located in regions A, B, or C. On the other hand, the
integral is exporerntially small when the observation point is located in regions

other than A, B, or C.

The reflected field integrand, fR(z > pl) will now be asymptotically

<2
approximated along that portion of the integrand path from P, = i,/A on the top
sheet to P, = i,/A on the bottom sheet. The uniform asymototic approximations
found in section b can be used for this purpose. However, an additional simp-
iification of the irtegrand can be obtained by using the approximations given

in Tablee . 1A and 4. 1B, but portions of the integration path lying close to

turaning points of cylinder functions must be omitted. We will use the later

Ve

i
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asymptotic approximations, and ther, deform the integration path around

the turning points,

Before doing this, it will be advantagecus to divide the portion of the
integration path under consideration into six intervals : three or the top
sheet and three on the bottom sheet. The intervals are: 1)Re P, =0,

JARZ < Imp < v/(z ), 2)Rep, =0. 0<Imp, </8Z and 3) 0<R.epl":4/'€_1 ,
Imp1 = 0. The intervals on the top ard bottom sheets are the same. I we
recall that vl(z <) and .,/ATZ- are the locations of turnirg points. Thea the

approximations to be used fcr fK(z< V2, p.) will not hold near these poinis.

By using the asymptotic approximations appearing in Tatles 4. 1A and
4.1B, the integrard for the first interval on the top sheet is given approxi-

mately by -
lko LR >
P, e

» /B2 <Imp < v (z,)

2 2 1 2 2 1
4Trp[pZ - vz(z>)] /4[pz - vz(z<)] /4

(4.3.47)

where

L
R> = §2+(z>, pz) + 62+(z<,pz) + px (4. 3. 48)

with §2+ being in Table 4. 1B, The equation for saddle points of this integrand
is given by d.!..R>/dp1 =0, By performing the differentiation on Eq. (4. 3. 48),
we find that the resultant equation is the equation for the returning ray with
zt>0 given in Eq. (4. 3. 13). The returning :ays are located in regions D, E

and F of Fig. 4.9 .

Proceeding in a similar manner, the integrand for the second interval

on the top sheet is given by
1kOLR<(p1)
P e dp1

flz20p)) - » 0<Imp <.,/b2

1 1
amplp - vaz 0112 - R (2 )1

(4. 3.49)
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where

Lpc=d,,(zp)+ &, (2 ,p,) - 28, (0,p,) + zcl_(lpll) +px, (4.3.50)

The saddle points for the abcve integrand are given by dlc..R</dp1 =0. If we
perform the indicated differentiation upon Eq. (4. 3.50), we find it to be the
same as the equation for the returning rays with zt<0, z>0, Eq. (4. 3.21).
Therefore saddle points appearing in this region corresponad to returning

rays with z <0, Thcse returning rays are located in regions B,C,D, E,

t
and G of Fig.4.9.

To show the correspondence between the number of saddle points in a
particular interval and their associated regions in the x-z plane, we have

prepared Table 4.2. In the table, only saddle points of ERef have been

considered, while saddle pointa of E . have been omitted because of their

Di
simpler form.

By using the asymptotic formulae to approximate the integrand in the

third interval, we obtain

Region in x-z pla>e Number of Saddle Points
O<Imp /A2 | JAZ<Imp, <Jb
A 0 0
B 2 0
C 1 1
D 1 2
E 2 1
F 0 1
G 1 0
Table 4.2

Correspondence between Saddle Points and Ray Regions of

Integral ERef.

A7 A
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ikoL_(pl)
plA(.rlpl) e 3

f -~
RE< 207! Va2 2 ? 0<Rep, <7,
J H -

2 2 1/4
47p [pz - vz(z<) 3 vz(z>)]

(4. 3.51)

where
Lr(Pl) =’2+(z<rpz)+’2+(z>r PZ)'z §2+(°l Pz) ’ A(',pl) ~ O(T.z) . (4. 3. 52)

We can show that the function A(-, pl) in the above integrand is of order
k;z . This means that any saddle points, occurring in this interval, will

rot give a dominant asymptotic contribution to E .the.refore, these contrib-

Ref ’/
utions can be neglected.

It is, howeves, interesting to learn about the physical significance of
these saddle points if they occur. The saddle points are given by d Le(py) - 0
An investigation of this saddle point equation shows that it rep-esents St
the equation for direct rays which are reflected from the discontinuity at
z=0. Only those direct rays, to the left of the critically reflected ray, shown
in Fig. 4.9, are obtained from integral 4.3.51. It is strongly suspected that
direct rays, reflected from the interface and lying between the critically
reflected ray and the tangent ray, would be found from a higher order asymp-

totic analysis of integral 4. 3.49; however, this has not been done.

A similar asymptotic analysis of the integrand for the three intervals
on the bottorn sheet shows that no saddle points occur along this portion of

this integration path.

Since we now know the location of all the saddle points occurring on the
integration path, the field ERef can be evaluated by using the method of steep-
est descents. We deform the original integration path into the adjacent decay
region and through the appropriate saddle points. The resultant field will

then be given asymptotically as a sum of a relevant saddle point contributions
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plus any contributions that come from singularities between the original
and deformed paths. At this point we will restrict our attention to cases
where the observation point lies in regiong B and C. The cvaluation of the
field in these two regions will illustrate the main features of the reiiected

field and will be useful for comparison purposes in a later zectica.

Two saddle points cccur on the irtegration path when the gbservatica
point is located in either regions B or C. For region 2 bLoth these saddle
points lie in the second interval, i.e., Repl= 0, 0<I:mp! < &2 and they
are shown in Fig. 4.10 where the lower saddle poinut is dencied by Py, snd
the upper one by PiR<" The nomerclature has bear motivated by toe fact

that for small L the rays correspcnding to p, . and Flp< look like the

lateral and reflected rays on an abrupt interg:ce respectively. For region

C one saddle point, Py, lies ii: the secornd interval while the second saddle
point, Pig>" is located in the first interval, i.e. ,/:’A-/’Z-'f_hnp!<vl(z>) .
Re P, 0. The naming of saddle pecints in this region har a similar motivation

to thosze saddie points associated with region B.

The decay regions which are adjacent to the integration path on the top
gsheet have been investigated by exranding LR>(pl ). LR< (pl) and Lr(pl)
about ar arbitrary pcint in integratior intervals one, two and three respect-
ively, ¥ P, is close to the integration path the apprepriate phase function car
be approximated by its first one or two tersmis. Use of the approximation in
the integrands of Zqs.(4.3.47), {4.3.47) and (4. 3. 51) yields the decay regions

for Band C, shown in Figs. 4.10, 4.11 and 4. 12,

The original integration path is then defcrmed and evaluated along this
deformed path. The portions of the integral passing through saddle points
are evaluated by the method of steepest d2scents, while portions of the inte-

gration path in decay regions are exponentially small.
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DECAYING
REGIONS

Fig. 4.10 Fig. 4.11
Deformed Path on Top Sheet for Deformed Path on Top Sheet for
Region B Region C
Imp,
727 DECAYING
% REGIONS

Fig. 4.12

Deformed Path on Second Sheet for Regions B and C
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The singularities that can occur between the original and deformed
paths are of two types : branch cuts and simple poles. There are no branch
cuts intercepted by the deformed path as can be seen from Figs. 4.1, 4.11
and 4.12. The asymptotic form of the reflection coefficient has no poles
located between the two paths except possibly in the turning point region,
| JA72 . Because of the complicated nature of the reflection coefficient
in this region, the singularities have not been investigated here. We will
assume that singularities, contributing other than exponentially small

contributions, are not present.

Upon applying the method of steepest descent when the observation

point is located in region B, we obtain

P} "PiR<
where . q
1k°LR<(pl) +in/4
P,
I(p,) = - (4. 3. 54)
171 2 2 V4 2 2 1/4 p IrA
2/ plos - v2 591" o2 - v2e 10 L e ff
and doing the same in region C, we obtain
Eg . . ~ iIl(pl)| ) + Iz(pl)| ) (4. 3.55)
P} = Py, P} = Pp>
where ik (p.)+im/4
oLR> Py
P e
L(p,) = - (4.3.56)
2'F1 2 2, Wl/a. 2 2 1/4 B 12
2/2m plp, - v, (201" [p, - v, ()1 [k 17 (p)))

To find the total field for regions B and C, we shall have to add the
contribution from the first integral in Eq. (4. 2. 14) due to the direct ray.
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The asymptotic formulae obtained in Eqs. (4. 3.54) and (4. 3.55) break

down as the observation approaches the tangent ray. Here a saddle point
approaches the turning point at P, = JATZ and the simple asymptotic analysis
used, can no longer be applied.

d. Conclusions

We have taken the exact solution, Eq. (4. 2. 14), and approximated it for
large koL, i.e., we have assumed that the medium is slowly varying with
respect to wavelengtk. The asymptotic approximations developed by Olver
have enabled us to show that the fizst integral in Eq. (3. 2. 14) corresponds
to direct ray cortributions while the second integral corresponds to return-
ing ray contributions. In addicion, contributions due to direct rays, reflected
from the interface, were fcund in the second integral but were of order l/ki
lower than the dominant rontributions. The above finding again confirms the
method of geometric-optics since all of the above results can be predicted
without resorting to the asymptotic approximation of the exact solution ; this
was demonstrated in section 4.3.2. The reflected waves for tiix: discontin-
uity were not mentioned in section 4. 3.2, but Chester and Kelle(x-.:l 3 have shown
that, for a dielectric profile having a discontinuous second derivative, the

reflected waves will be l/ki lower than the incident wave.

4.4 Asymptotic Evaluation of the Field for Large koLP

a. Introduction

In the last two sections, 4.3.2 and 4. 3.3, the high frequency field has
been investigated when the transition profile is slowly varying with respect
to frequency. We shall now investiigate the high frequency field for all trans-
ition thicknesses, koL, with special attention placed upon the changing charac-

ter of the lateral wave, as the transition thickness increases. The method
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used will essentially foilow Chapter 3, i.e., we will write the reflection
coefficient in an exponential form and then use the method of successive

approximations to find the saddle poirts.

b. Restriction of Field Evaluation to Homogeneous Regions

An examination of the field representation given in Eqs. (4. 3. 40) , (4.3.41),
(4. 3. 42) and (4.3.43) shows that both the integrals for the direct field, EDir
and the reflected field E are of a different generic type than the integrals

Ref
that were uniformly evaluated in Chapter 3. The basic difference is the

presence of the Bessel functions Jvz(-ﬂ.e.'”') and J-vz(-ile'dL) . In order
to apply the methods of Chapter 3, the Bessel functions must be approximated
and this will, in turn, limit the region in which the uniform asymptotic approx-

imation is valid.

Since the integral evaluated in Chapter 3 resulted from an exact field
rcpresentation in a homogeneous region, it would seem likely that placing
the observation and source points far from the interface (z = 0) might put
the integrals for EDir and EP.ef in a more tractable form. For large z and
z' the arguments of the Bessel functions become small, and the Bessel
functions can be represented approximately by the first term of their series

representation,

To put this on a more rigorous basis, the Bessel function can be repre-

sented as‘“)
2m
v, ik p.z @ [-ik -2m z/L
3, (-ir e VL =('—‘2>‘-/ Ergr oz \T) i . (4.4.1)
2 m=0 m! I‘(v2+m+l)

The rate of convergence of the series can be measured by the absolute
value of the ratio of adjacent terms in the series. The ratio of the (m+ };)th

th
to the m term is
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A TZ e-Zz/L
R = > 2 (4.4.2)
2

m 2 z
+2+
Sm[(m 2 TpZi) +-rprJl

where Py, and P,; are the real and imagniary parts of P, respectively.

An examination of the above ratios shows that a sufficient condition for

the Bessel function to be approximately equai to the first term in the series
representation is Ro<< 1. A slightly more restrictive condition than R°<<1

18

AT e-ZzlL

<<] . (4. 4. 3)
le, |

This more restrictive conditicn can be expressed in a more physically

urcdesrstandable form, i.e.,
\ (Letz)
‘ - <1, . 4.
("Pz/( dz /“z)) SsL (4. 4. 4)
As z becomes large, :(z) tends toward unity, and the above conditior

requires that €’(z) must be small compared with P,/ 7.

| This morez accurately defines what is meant by assuming that the source
and observation points lie in the "homogeneous' region. We note that rays

close to the glancing angle will have to be excluded from our treattment since

these rays have P, = 0.

It must be mentioned at this point that one representation for the field
will be sufficient for an asymptotic calculation along the whole integration
path. If we recall in section 4. 3.3, two different representations are
necessary to calculate the field. The representation given by Eq. (4. 2. 14)
does not give an i..determinate asymptotic expression for the field if the
source and observation points are located in the "homogeneous'' region.
As 2 result we will not need the alternative representation in Eq. 4, 2. 16

in this section.

E
I
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By using the first term of the series representation for the Bess~l

function in the integral for E . Eq. (4.3.41), we have

Di

! . 1 ?, +iko{p2|z- 2’| +px]
Fpir ¥ am | pp, © dp, - {4.4.5)
C r'A

i We can recognize the above expression as the incident field emitted from
2 source located in a homogeneous medium havine a dielectric constant of
unity. The asymptotic evaluation of the above integral leads to an interpre-
tation of the field as consisting of straight line rays. It can be shown that

i the "homogeneous' approximation, in general, limits us to the region where

the rays are approximately straight lines.

4 . By substituting the same approximation for the Bessel function in the

expression for E Eq. (4. 3. 42), we obtain

I Ref '

pll" iko {pz(z+z "+ px]

o 1

H ) N o— r . .
P “Ref ~ 4m | pp, dp, (4. 4. 6)
i ¢é 2
o
i
} ; where X I‘(l-vz)-f
‘ r = RTTTTm— . (4. 4. 7)
; ra +V2)p2

F In the above expression I is the plane wave reflection coefficient as z ~®,

Here again the rays in the "homogen:ous'' region will be straight lines but

will have a phase delay due to T .

c. Asymptotic Evaluation oif ERef

Following Chapter 3, we rewrite Eq. (4. 4. 6) as

ik [p_(z+z')+px + Ik ¥ (p, ,/E7)]
= ~ L [ Lo o2 o' ‘P dp,  (4.4.8)
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where T has been represented as

£ eit(pl, JAT)

(4. 4. 9)
with
ra-v.)) .y 2V
le.JA_T)=-iln{fr—(l;v—z)—(l;-) z} . (4. 4. 10)
2

The multivaluedress of the logarithm does not appear in the integrand

since the function eInQ is single valued.

The uniform asymptotic evaluation of the above integral will be per-

formed by the method of steepest descents. As was the case in Chapter 3,

the saddle points wili be found by the method of successive approximations

and will have a location in the ?) plane that varies with the large parameter

ko 5 ‘ !
The equation that describes the location of the saddle points is

p,[(z+2)/p, Fxlp] + (1/k Javsap =0, ) PP oty g

+second sheet
We shall solve this equation in the region to the right of the critically
reflected ray. When Tt is small or moderate in value, the position of the
critical ray is closely approximated by the critically reflected ray from
an equivalent abrupt interface problem. When 7 is large, the position of
this ray is shown in Fig. 4. 9. For observation points in the '""homogeneous'
region, the critically reflected ray in Fig. 4. 9 and the upper branch of the
caustic almost coincide. Therefore, using the nomenclature of Fig. 4.9

for large 7, we are finding the saddle points in regions B and C.

By applyirg the method of successive approximations to Eq. (4.4.11)
on the upper sheet when ko is large, the first corrected location for the

saddle points is given by i

B _—




T

o) 4y
PIL 7 x L dp,

, L '-'-x-«/el/A(z-rz') (4.4.12)
P, =0 d

ir

o= 0 gt /’«/-k L (o 2o} + x/p° WBx+ ST (242" )H

-plr

(4. 4.13)

where the superscript is the order of approximation with p1 u/Ax -(z+2’ ) €
and ddx/dpl = 1|d\11/dpl| for Re P, = 0, 0<Irnp1 <A . For this approximation to

be valid we must have

d¥(p, ,/A)
———— << <r< S < ~
dp| k L 1, 0<r<e, Rep =0, 0<Imp, <J&. (4.4.14)

We can show for small and for moderate values of 7T that d\lr/dp1 is bounded

except at o, = 0 and for large values of T that d\l:/dpl = Tf(pl) where f(pl)

2
is a bounded function of p except at P, = 0. This leads us to the conclusions

that the method of successive approximations is valid when

k L >1 , L/L <<1 . (4. 4. 15)
op P

Since the critically reflected ray occurs at Lp = 0, these conditions
essentially state that the observation point should be located a number of
transition lengths L from the critically reflected ray, for the method of
successive approximations to be valid. No other saddle points occur in the
remaining portions of the integration path on the top sheet or along any

portion of the integration path on the lower sheet.

The integration path will now be deformed in (he adjacent decay regions
and through the two saddle points just mentioned; it can be shown that the

decay regions for small or for moderate T are similar to those described in
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Chapter 3 and also to those shown in Figs. 4.1G,4.11 and 4.12. For

large 7, the decay regions have been caiculated in the last section, 4. 3.3.,
and are shown in the three figures mentioned above. No singularities of the
branch type occur between the original and deformed paths. The nature of
pole singularities have not been investigated in detail except in the case of
large T where a partial investigation shows that no singularities which have
a substantial effect on the field are present. We will assume that any singu-
larities which might occur between the two paths are unimportant and their

residues can be neglected.

The integral is now evaluated along the deformed path. Portions of the
path in the decay regions have exponentially sms:: contributions while the
dominant contributions come from the portions of the path near the two

saddle points. The asymptotic approximation for the reflected field is

Epes - E. +Ep (4. 4.16j
where
iko[pz(z+z')+px+(l/ko)t(pl, JBET)) +im/4
E -~ plle e (4.4.17)
r jz+z’! x 2/z+z2 x 2 % _ (0)
z‘/ZT""Z[ P, 'p'pl( 3 +3)] D | STl S
. 129 P
1/a iko[./A_(z+z’)+./§x +(1/l%)'(~/A_T)]+3ﬂ/4
€ AWbr)e
E, ~ (4. 4.18)
L 3/2
./EFA(koLp)
with
- A
Y WET) = (0, /A7) = 2tan" (g‘;x} - 2511 (3) (4. 4.19)
-ZTTJZTT
AWET) = 32@ -%L = u—-z— (4. 4. 20)
plpl=0 nJB 1 | M|
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and
M= 13 g () I0) -3 M) T o (-i2)]TQ+iEY) o (4.4.20)

The notation Er and EL has been adopted since, in the limit of small v,

these terms correspond respectively to the reflected and lateral wave

contributions on an abrupt interface.

The contribution Er has the form of a reflected wave for an abrupt
interface except for the presence of the phase term, *."(pir , /b 7). This
phase term increases as the normalized transition thickness, koL 0
increases. For large 7, the asymptotic approximations for the Bessel

functions can be used in ¥ (plr , . /AT). We obtain

.Y - - -
2% (Ip_D-28, 0.p, )-21p nizp, VZE)-2Lp,

tpy B ) ~ o< |p_l <572 (4. 4.22a)

(4. 4. ZZb)
- < <v

where Ql- and §2+ have been defined in Table 4. 1B and P, = JA - |p1r|2 .
The use of these approximations in Eq. (4. 4. 17) gives us a portion of the
reflected wave when the transition is slowly varying with respect to frequency.
This portion of the reflected field corresponds to contributions from rays

that make up the section of the caustic close to the interface as shown in

Fig. 4.5.

The contribution EL has the form

iy (/A7) . .
E ~ A(J/AT) e {conventional lateral wave contribution},

(4. 4. 23)
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Here A(V/& ) and (/A 7) form a transition function which modifies the form
of the lateral wave. For small T, EL
conventional lateral wave contribution since A(/5 t)=1 and ¢(/A 1)~0. As -

is approximately represented by the

increases, A(/Av) and #(/A 7) increase in such a way as to modify the lateral
wave term and change it into a geometric-optics contribution. For large T,
the asymptotic forms of the Bessel functions can be used to approximate
AWB 1) and ¥(/BT1). We obtain

ik JJE(z+2)+/F, x+Z./E[Z/.fZ--l-ln(l—+'g)] +im/4
ﬁ€1,4 Le ° ! 2“/2-
1

= z./'zTL(kLTé
P op

E , T>>1

(4. 4. 24)

We note that the k;yzl/;ependence for small 1 in Eq. (4. 4. 18) has now

been replaced by a ko dependence. This signifies the change in the
contribution Ey from a diffraction effect to a geometric-optic effect. The
amplitude A(/A ) and the phase #(J/B 1) have been plotted in Figs. 4.13

and 4. 14 respectively. The dash line in these figures represents the slowly
varying approximation, i.e., when A(J/A ) and ¥(/A 1) are asymptotically

approximated for large ..

The approximate forms of Er and E_ for large T can also be obtained

from the results of section 4.3. There tll:e field in region B is given by

Eq. (4. 3. 53) while the field for region C is given in Eq. (4. 3. 55). If we
simplify the expressions by placing the source and observation points in
the ""homogeneous'' region and assume L/L_>>1, these reduce to the large
T results of this section. To be more explicit, the term iIl' (pl) P, =

P11,

reduces to Eq. (4. 4. 24) ; the term I1 (pl) reduces to (4. 4.17)

with t(ph_ , ¥/B 1) approximated by Eq. (4.4. 22a) and finally the term
L(p,) | - reduce to Eq. (4. 4. 17) where in Eq. (4. 4. 17) is approxi-
17 1Py = Pyp>

mated by Eq. (4. 4. 22b).
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d. Conclusions

Our basic purposes for treating the double exponential medium were
twofold : first, to see if thz lateral wave behavior observed on the Epstein
half space carried over to profiles where the source was located in the
inhomogeneous medium, and second, to see the effect of relocating the
second order discontinuity in the dielectric profile. We found that by
restricting the source and observation point locations to the '"homogeneous"
region, results, similar to those in Chapter 3 were found. The lateral wave
changed to a geometric-optics wave as the transition went from abrupt to
slowly varying. It was also observed here and in Chapter 3 that the depend-
ence on the lateral distance Lp remained L.sfz , independently of the trans-
ition length. The discontinuity in the dielectric profile did not affect the
basic nature of the lateral wave expression but it did introduce a difficulty
in the reflected field, Er . For large transition length, the field close to
the tangent ray could not be treated by the classical mzathods of geometric-
optics.




CHAPTER 5.

-
|

AN ARBITRARY TRANSITION LAYER

5.1 Introduction

To conclude our investigation of lateral waves which are excited on
transition layers, we shall discuss and, in some cases, analytically
formulate the dominant asymptotic contributions to the reflected field from
an arbitrary monotonically increasing layer. The layers to be considered
are divided into two basic classes : finite and infinite. The finite layers of
width L will consist of a dielectric medium varying continuously between two
half spaces, one being composed of vacuum (z >0) and the other (z<- L) having
a dielectric constant of ¢1<l . The dielectric variation of the layer should te
strictly increasing, i.e: de(z)/d=>0 except at the lower interface where
(n-1) derivatives of €(z) may be zero. To be more explicit, the dielectric

profile €(z) has a series expansion at the lower interface which is given by

n n
+ -
< "nz -(z—i'-‘)!— {5.1.1)

e(z) = €1+
dz z=-L

The infinite layer, on the other hand, will again consist cf a vacuum
half space for z>0 and a strictly increasing dielectric profile (z<0) which
approaches € asymptotically as z~-®, In addition, we will require that
all derivatives of €(z) approach zero z--= and that €(z)= ¢(z/L) where L
is a parameter which is proportioned to the average thickness of the layer.
Both classes of layers have this property: as L. becomes small, the medium

approaches an abrupt transition.

The line source, as in previous chapters, will be located parallel to the

z =0 interface in the vacuum medium. Sources placed in the inhomogeneous
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portion of the layer will not be considered, since the results of Chapter 4
indicate that such a source location has little effect on the basic character
of the lateral wave excited.

The structure of this chapter will be similar to previous chapters. First,
the reflected field from a layer that is thick compared with wavelength will be
discussed and then, an asymptotic evaluation of the reflected field representa-
tion will be carried out when koLp >>1.,

5.2 Reflected Field from an Arbitrary Layer for koL >>1

The reflected field from a layer that is thici: compared with wave-
length can be obtaired asymptotically by the classical methods of geometrical-
optics with the exception of those regions where diffraction effects are import-
ant. In this section we would like to locate those diffraction regions for an
arbitrary layer and try to predict, by using the results of previous chapters,
what type of diffraction effects we can expect.

Before doing this, however, the ray trajectories, as predicted by classical
geometrical-optics, will be investigated. The rays emitted from the source
toward the layer divide into two ray types : transmitted and returning; the two
ray types are separated by a critical ray. The returning ray equation, as

given by Orlov(zo), is

x=x +x.2/z s z>0 (5.2.1)
o i =

where X, s the coordinate at which the ray enters the medium, can be related
to the ray parameter p used in previous chapters. Their relationship is
X =P, z'/p . The coordinate X is the point at which the returning ray leaves

the layer, as shown in Fig. 5.1, and is related to X, by

x = xi+2xt . (5.2.2)
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)2

Fig. 5.1

Typical Returning Ray Trajectories
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Here x, is the x coordinate of the turning point which is given by

(5.2.3)

%
x = - I _pdT
t 2
o .A:(T) P
in terms of the ray parameter p.

The rays described by Eq. (5. 2. 1) usually cross one another in such a
way as to form a caustic and foci. The constraint equation of this caustic
can be found by taking the derivative of Eq. (5. 2.1) with respect to x, . The

result is

dx /dx, = z/z' . (5.2.4)
o i

We see, frcm this equation, that the caustic goes into the layer at points
given by dxo/ dxi= 0 . An additional point or points on the caustic can be
found by using the result of Appendix D where it has been shown that the
maximum of the locus of turning pointis (dxt/r.'lzt= 0) corrzsgonds to points

at which the caustic crosses the line z=2'.

The locations of possible foci are given by the second constraint equation
dzx /dx.2 =0 (5.2.5)
o i

when used in conjurnction with Eqs. (5.2.4) and (5.2.1). The constraint

equation was found by taking the derivative of Eq. (5. 2. 4) with respect to x, .

Now that we have outlined the means by which we can obtain the structure
of the reflected ray family, as predicted by classical geometrical-optics, we
will discuss diffraction effects. To simplify the following discussion, it will
be 2 3sumed that the profile of the arbitrary layer is completely continuous for

-L<z<0, i.e: all derivatives of €(z) are continuous in the layer region.
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This assumption eliminates diffraction regions occurring in the vicinity
of rays which have their turning points located at discontinuities of
d"e(z)/dz" .

Diffraction regions are those regions in which the classical theory of
geometrical-optics gives a poor approximation to the field. Typical rr:gions
of this type are caustics, foci and ray regions composed of rays emicted close
to the critical angle. It is the latter of these diffraction effects that we wish to
discuss. The class of layers, under discussion, will be divided into three
parts: first, layers with a discontinuity in slope, n=1; second, layers with
discontinuities in higher derivatives, n>2; and third, infinite layers. Each

sub-class of layers will be discussed individually.

The layers with n=1 have been singled out since these layers have
critical rays whose turning points have finite coordinates. The results of
Chapter 1 indicate that a lateral ray should be exicted at this turning point
and it should travel along the z = - L, interface while shedding energy into the
1/3 3/2, iy
Mk L) ")e .

Here ¥ is the phase from the source to the observation point along the lateral

reflected field. The general form of this wave would be A( (koL)

ray; Ls is the distance that the ray travels along the z = - L interface and A
is the excitation coefficient which will depend on the slope of the layer at
z=-L. We note that the ko dependence is smaller than the returning ray
contribution, however, the lateral wave contribution might be important if
there were any loss in the layer. The results of Chapter 1 also seem to
indicate that the returning rays which lie close to the reflected critical ray
have field contributions that are not predictable by the theory of geometrical-
optics. The field in this region could be obtained by an asymptotic analysis of
the integral representation for the reflected field.

The next class of layers to be considered are those layers with n>2 .

An examination of the critical ray in this class of layers stows that it is

4 en Ao il a
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similar to the critical ray observed in Chapter 2. There the critical ray
never becomes tangent to the lower interface but only approaches it
asymptotically i.e., as z - L, xc«+°° where X and z_ are the coordin-
ates of the critical ray. Because this ray never becomes tangent to the
lower interface, the geometrical interpretation, rendered to the lateral
wave in the n=1 case, does not seem applicable here. However, it does
appear that returning rays, emitted close to the critical angle, form a

diffraction region.

To see the behavior of these returning rays for a special case, we

have chosen

e(z) = el+A(z/L+l)n , n>3 (5. 2. 6)

We have not included n=2 since an example of this case has been given
in Chapter 2. The ray equation (5.2.1), when rewritten in terms of the

ray parameter p, becomes

2

X = p(z+z’)/p2 t2x , p,=4l-p (5.2.7)
where
ot d 2
x, = BT ez,) = p (5.2.8)

o JA(r/L+1)"- Ip, 1z

and |p1 | = o pZ- € - For Ipl | small, Eq. (5.2.8) can be written as

Al/n
= —Lp flpll I aw
v, nz w -1
A" |p IR !

I-Z/n

1
where we have used the change of variable w=A /n('r/L+1) Ipl

(5.2.9)
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The dominant asymptotic approximation for x, as lpl | -0 is then

t
given by
LJS€ I
el 0
x = -+ ollp, 1"y , n>3 (5.2.190)
t 1/n n-c 1 =
a7 |pyl
1 ;
where In is a convergent integral given by i

v dw
D] =2
1

We see as Ipl | <0, the slope of the ray tends toward “’/Ahl while the
intercept at the x axis tends toward infinity. As in the n=2 case, these
rays have trajectories similar to the lateral wave observed in the linear

layer in Chapter 1.

We see that rays in this type of medium, which are emitted at angles
close to the critical angle, contribute to the reflected field at large distances |
from the source. The results of Chapter 2 would also indicate that the
methods of geometrical-optics are not generally successful in computing

the amplitudes of these ray contributions.

The obvious step to take after considering profiles with n> 2, is to
investigate an analytic layer. At present this has not been done for a finite
layer, since no analytic profile could be found which has known wave
functions associated with it. Recourse was taken to infinite layers, such as
the symmetrical Epstein transition, for which the wave functions were known.
An examination of the critical ray in an infinite layer shows that as
x ==, z " o, This differs from tre finite layers where z == L . The results
of Chapters 3 and 4 have indicated that returning rays emitted close to the
critical angle tend to act in a similar manner as the returning rays from

finite layers with n>2, with one exception. This exception is that as
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Ipl | <0, the turning point z, tends toward infinity. The results of
Chapters 3 and 4 also indicate that the method of geometrical-optics
does not break down as the angle of ray emission from the source

approaches the critical angle. Therefore no diffraction region is observed.

5.3 Evaluation of the Reflected Field for koLp >>1

5.35.1 General Considerations

In this section we will investigate the reflected field from an arbitrary
transition when koLp >>1 and I..p >>L. From this investigation we will
determine the nature of the diffraction field at large distances from the
source when koL >>1, and relate this diifraction field to the lateral wave
contribution v hich is excited on an abrupt interface. The analytical treat-
ment will be limited to finite layers ; infinite layers will be discussed by
using the results of Chapters 3 and 4.

5.3.2 Finite Layers

The integral representation for the reflected field from an arbitrary

finite layer is given by

1 . plf iko[pz(z+z')+px}

E =

yr 4mi dp

e , z>0 5.3.1)
PP, 1 - (

|
|
C

where

T = o 5.3.2
T B, /Ab ( )
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with
%!2(-L)+ikap} %(-L)% gfi(-L) + ikopl 61(-1_.)%
At =
b ;f’z(o)t ikopz Qz(o)z iQ (o) ik p2 (o)i

The integral representation is the same as the integral representation
appearing in Eq, (1. 4. 1) with one exception; their reflection coefficients
are different. The reflection coefficient, appearing in Eq. (5.3.1), has
been derived in Appendix A. In this Appendix, we have defined & (z) and
] (z) as two independent solutions to the reduced wave equation in the

hyer region. The square roots p-Jel P, » = JA tp and the path C

are defined in Figs. 1.5 and 1. 6.

I we now use the assumption that k°L<< koLp , then the reflection
coefficient in Eq. (5. 3. 1) is slowly varying compared to the exponential
in the integrand, and the standard steepest descents techniques can be used
to asymptotically evaulate the integral representation for large koLp . The
asymptotic evaluation parallels the evaluation of the integral in Eq. (1. 4.1)
and, as a result, we will not present it here. The results of this asymptotic
analysis are that two saddle point contributions make up the reflected field
when koLp >>1 , The first of these is a contribution fr</)m a ray reflected
from the z=0 interface. The contribution has a O(k ) for all layer
thicknesses. When koL >>1, the contribution can be predicted by the class-

ical theory of geometrical-optics,

The second contribution to the reflected field comes from the saddle
point occurring at P - 0, as shown in Chapter 1. This contribution, which

will be denoted by E_ is given by

L
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1/4 aT

dpl p1=0 ik '[~/A-(Z+Z')+V€IXJ -in/4
o]
22T A (koLp)

where

i . ] 218 [@2(0)61(0) - éb;_(o)@l(c')]z

dp B ., ' ’ ! i : 1 ’
Hp -0 115 LY ¥](0)- ] (-1 #(0)] -k VE[#(-1) 8, (0) - ¥} (-L) ¥, (o) I}

(5.3.4)

T= koL and the prime indicates differentiation with respect to z/L. The

above contribution can be written in the following form

the lateral wave
E ~  T(T) contribution on (5. 3.5)
L .
an abrupt interface.

where _
.8 dr
T(7) = 2 dpl ) (5. 3. 6)
p, =0

In the above T(T) is a transition function which is independent of the
observation point if we keep within our original assumption that koL >>1

and L. >>L.
P

It would be interesting to learn what particular characteristics of the
layer's profile affect the transition function T(v), however the wave
functions Ql(z) and Qz(z) are not known, As a result, we will limit our
investigation of T(7) to values of T which are small or large compared

with unity.
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We will proceed first with an investigation of T(") for small .
An approximate expression for T(T) when 71 is small can be obtained by
expressing T ina power series in 1. We can obtain this power series by
considering the generalized reflection coefficient .:(z) in the layer. This
reflection coefficient obeys the Ricatti equation as given by Brekhovskikh( L)

¥

i.e:
aT/dz = 2ik p (z)T(z) + ¢(2) (I-Fz(z)]/pi(z) (5.3.7)

where pz(z)=Je(z)- pz . This reflection coefficient is the ratio of incident
to reflection wave fields at any point z. As a result when z becomes less
then ~-L, the reflected wave disappears and -1:'(- L)=0. We use this condition
as the one initial condition necessary to make the solution to Eq. (5.3.7)

unique.

Actually the function F(z) defined by this equation has, in general, no
physical meaning since incident and reflected waves are indistinguishable
in an inhomogeneous mediam. However, when the medium is slowly
varying, compared to wavelength or z is located in an hornogeneous region,
this difficulty no longer occurs and the reflection coefficient takes on the
meaning that we usually ascribe to it. In our particular case, F(z) will be
evaluated at z = 0+ , a poiat where F(z) is physically meaningful. For a
more complete discussion of Eq. (5.3.7) and its physical interpretation we
refer the reader to Schelkunoff(35) 5

Brekhovskikh! 2 ) and wait(3®

have developed a procedure for expres
ing f(z) in terms of an ascending power series in ko which would be useful for
our purposes. Unfortunately the above series does not converge for P, = 0
and it is at this point that we require the series development. To alleviate

this difficulty we have slightly modified Brekhovskikh's method and developed

a series which does converge at P~ 0.
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At this point we will assume €(z)=¢(z/L). This assumption is not
necessary but it will simplify the analysis to follow and, at the same time,

allows for a sufficient amount of generality. The transformations

= p (2] viZ) - uiz}) - .
= e ram 0 2T oot

where pz('Z) will now be used in Eq. (5. 3. 7) and an equation for v(z) and
u(z ) will be obtained. It is
PZ( z )V]

p(z)v - 5 (5.3.9)

w/u-v/v= iTtp (z)[

where the prime indicates differentiation with respect to Z . This equation

can be satisfied by subjecting u and v to the two equations
' 0 B
u =-11’pz(z)v (5.3.10)

vi=-irtu . (5.3.11)
*
The solutions of the above equations with the boundary conditions

w-1)=p, , v-1)=1

yields Eq. (5. 3. 7) with the boundary condition that T 2= - L= 0. Now

combining the Egs. (5.3.10) and (5.3.11) we obtain a second order equation

for v(z). It is
P 2 2,
v = -1 pz(z)v (5.3.12)

B
The boundary conditions are imposed on the negative side of the
discontinuity at z=- L.
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with
vi-1)=1 , v’(-l):-i-rpl . (5.3.13)

We will now convert Eq. (5.3.12) into an integral equation by considering

the Green's function problem v” = - §(z-z°) and by considering the right hand

side of Eq. (5. 3.12) as a source term. By using Fried:man's(37) result for
the Green's function, Eq. (5. 3.12) becomes
= . - 2 2 -
W(Z)=1-iTp Z -1 f P () (Z -t) vt)dt . (5.3.14)
=1

With the aid of Tricomi(38)

, it can be shown that the method of successive
approximations with 1 - iTplE' , as the zeroth approximation, converges
to the solution of Eq. (5.3.14). The only requirements are that 1-1i Tpl'z'
and 'rzp:(t) (Z -t) be square integrable in the interval -1<Z<0. We take

special note that this solution will converge at P, = 0.

By applying the method of successive approximations to find v(Zz) and
then by using Eq.(5.3.11) to find u(z), we can obtain an approximation to
F(O) for small 7. It is

P 2
2iTp [J (c(t)- e,)dt-p ]

2 ] 1 1

2

T =T(0) = +0(r) , (5.3.15)

2
(p, +p;)

If we now take the derivative of T with respect to P, » We can obtain an

approximate expression T(r) when 1<<1. This expression is

2ir
T(r) =1 + —=—=
JE

where the term in the brackets is the average of €(z)- € s ice.,

e(Z) - e1$ + O(r%) (5. 3. 16)
av
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o o
3&: (z)- elz = r (e(t) - €1)dt = -IL r (e(z/L) - el)dz . (5.3.17)
av -1 -L

I we refer to Eq. (5. 3.5) we see that as 1~0, the lateral wave contribu-
tion EL tends toward the lateral wave excited on an abrupt interface. The
first perturbing term, as can be seen from Eq. (5.3.16), is proportional
to the average amount that the dielectric constant exceeds €
Since we have obtained the approximate form of T(r) when 7<<1, we
will now investigate T(t) when 7>>1. The general procedure for doing
this will be to asymptotically approximate the function @l(z) and Qz(z)
appearing in Eq. (5. 3. 4). The asymptotic approximations to these functions

will be obtained by using Langer's(39)

comparison method. This method
allows us to find the asymptotic solution to one equation in terms of the
solution of another, For the procedure to apply, the two equations must

have turning points of equal order.

The unknown functions @l(i) and @2(2) obey a reduced wave equation

2
d 2 [ = -
3;2 o [e(z)'ﬁ”@%m”’ » Z =z/L (5.3.18)

with the boundary condition that QI(E) and @2(2) must be outgoing and
incoming waves respectively, when kOL is large. We have assumed, as
before, that &z)=€(z). Since Eq.(5.3.18) has one turning point of nth order,

we choose as a comparison equation

2
3.‘1_2 + ngnz ¥, (8)=0 (5.3.19)
a§ 2

where wl(z) must obey the same boundary conditions as @l(z). The above

2 2
equation can be transformed into a Bessel equation and has the following
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solutions :

By applying Langer's method with Eq. (5. 3. 19) as the comparison equation,
the asymptotic approximations Ql(z) are given by

2
Z %
22 fem-glar| ) s %
- -1
8 (3) ~ [e(_) p]1/4 == H, I ;'[l(e(T)-el) ar| . (5.3.21)
2 205 n+2 '

We shall also require the asymptotic approximation for d@l(Z)/d'z' . This

2
can be obtained by taking the formal derivations of Eq. (5.2.21) and retain-

ing only the higher order term. The result is

Z
d; . T[S(E)-G ]1/4[ == Il(e('r)- el)%d-r] n+1[ I e(r)-¢,) d'r]
n+2

(5. 3.22)

An examination of Eq. (5. 3. 4) shows that we will require @1 , QZ and

their derivative at z=0, When 7 is large, the argument of the Hankel
functions in Eqs. {5.3.21) and (5.3.22) becomes large. By using the
asymptotic expansion for Hankel functions with large argument and fixed

o]
+i [T-Il(e(n- el)i"dw - 42”;12) ]

orders, we obtain

n+2

Q%(o)- W e

(5.3.23)
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(o]
and 2i ['r ‘ (e(7)- el)éd-r - 4?::2) TT]
# (o) ~ %ir (nt2)s -1 (5. 3. 24)
5 mT

The evaluation of Eq. (5. 3. 4) will also require knowledge of §'1(-L) . This
can be obtained by using 2

(1) =V
H (2) ~ 7 2L ) STV

L (z) = , z<<1. (5.3.25)
in Eq. (5.3.22). The result is
1 Y/n+2 . ntl
-] tim —
#(-L) - F [T(n+2) [if‘%] r{ %1—; n D (5. 3. 26)
2

where ¢(n)=d" ¢(z)AZ"

Z=.1 Ifwenow use Eqgs.(5.3.23), (5.3.24)
and (5. 3.26) in Eq. (5. 3.4) we find that T(1) is given by

(o} .
[_n_] ZiTJ‘(C(T)-el)%dT - 2‘(2’:2)
T(tr) ~ AT e e -1 (5.3.27)

when 7>>1 . The constant A is given by

]
A:nﬁ[L—]“+z /rz (ﬁi—;) . (5. 3. 28)

(n+2)" €(n)

An inspection of Eq.(5.3.27) shows that as n increases, the order of
T(T) rises. This means that the more continuous the dielectric profile is
at z=- L, the stronger the lateral wave is excited. In fact, as n tends
toward infinity, the lateral wave contribution approaches an O(k;/z) . This
means that the lateral wave contribution will be as strong as the geometrical-

optic contribution,
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It is interesting to compare the lateral wave field with the
reflected field discussed in section 5.2, There, when n=1, a lateral
wave is excited and has an O(k:/6) . As the iaterai distance, Lp .
becomes great compared to wavelength, the lateral wave contribution
found in section 5.2 becomes identical with the lateral wave contribution
given by Eq. (5. 2.3) with Eq.(5.3.27) and n=1., We also note in section
5,2 that when n>2 , the reflected field is composed of two contributions.
One of these contributions can not be obtained by the methods of geomet-
rical-optics when Lp becomes large compared with wavelength, In this
section we see that the geometrical-optic contribution, observed in
section 5.2, makes a transition to a lateral wave type contribution as

koLp >>1, We have made no attempt to find the transition function between
these two contributions.

5. 3.3. Infinite Layers

We will not treat the class of infinite layers analytically, as has been
done for finite layers in the last section, but instead, we will discuss the
contributions that we might expe t on the basis of the results oi Chapters
3 and 4. The results of both of these chapters indicate that. as in the
finite case, the reflected field for koLp >>1 consists of two contributions.
One of these contributions appears to come from a ray reflected f2om the
z =0 interface while the other contribution has a ia.y trajectorv similar to
a lateral ray. The latter contribution has an algebric decav factor of L;3/Z
which is independent of koL . This behavior is also obsersved in sections
5.3.2. The excitation coefficient of the coutribution ~hanges with v . For
small 7 the contribution appears to reduce to a lateral wave on an abrupt

interface while, for large 71, the corcribution seduces to a geometrical-

optic ray. It is interesting to note tnat the l~.teral wave contribution,

N
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-1
investigated in the last section for arbitrary n, approaches a O(kr /2)

as n-», This is the same order as a geometrical-optic contribution. The

interesting contrast between the lateral type contributions on finite and
infinite layers for koLp >> koL >>1 is that in the infinite case the methods

of geometrical-optics can be used to obtain the lateral contribution while

in the finite cases it cannot.
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APPENDIX A,

ONE-DIMENSIONAL GREEN'S FUNCTION
PROBLEM FOR AN ARBITRARY LAYER

The function #(z, p) is a one-dimensional Green's function. It obeys

the equation

=+ [e(z)-pz]! #(z,p) = - 8(z-2') (A-1)

;dz 2
dz

and must satisfy the radiation condition as z~+*®, We shall choose an

¢(z) which is given by

ez » 220
e(z) ={ €(z) , -L<z<0 (A-2)
€ , zZ<-L

where ¥ (z) is an arbitrary function of z . The formal solution to Eq. (A-1)

(40)

is well known and is given by
& >
[ 4 (z() ® (z>)

wit D)

#(z,p) = (A-3)

where z_ is the greater of z or z'; z_ is the lesser of z or z' ; ?(z)
and‘T(z) are independent homogeneous solutions to Eq. (A-1) which satisfy
the boudnary conditions at + and - infinity respectively; and the

-
Wronskian W (% , ?) is given by

w (D) = Fl) &) ¢, B (A-4)

oo S VRS TR et

AL
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At this point we will limit ourselves to finding the Green's function

' I - .
for z>0 and 2 >0 . In this region the function #(z) and §(z) are given

by
ikp, z
—
3(z) = e °° . 230 (A-5)
-ik p,z ik p,z
e -
$(z) = e oz T e ° 2 . 220 (A-6)

where pz=ch-p2 . The coefficient T will be determined at a later point.

By using Eqs. (A-5) and (A-6) we can calculate #(z,p). It is given by
o '
i koplz -z l

= ik p,(z+2’)
e T 1 oP2
Q(Z:P) S oS5 - . e . (A-?)
2ikp, 2ik p,

All that remains to be done is to determine I . This can be accom-
-«
plished by imposing the boundary condition on ¢ (z) that it must be out-

going at - @ . This gives

-ik p,z _ ikp, 2z
g + Tel® s » 220
(g(z) = aél(z) + 8§2(z) , =L<2<0 (A-8)
-ik p, 2z
& ol s<- L

where ¢ (z) and ¢_(z) are two independent homogeneous solutions of

1 2 5
Eq.(A-1) for -LL<z<0 and P = Jel-p . If we recall that the one-dimen-
sional Green's function, #(z, p) is related to the electric field via a Fourier
transform, then we can conclude that $(z, p) and (d/dz) §(z, p) must be con-
tinuous across the discontinuities of €(z) since the tangential fields Ey and

Hx are continuous across these discontinuities. By applying these conditions

at z=0, we obtain
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1+ T = aﬁl(o) + B;‘Z(o)
_ 3 . .= - ’ ) ’
1kop2 + 1kop2 aél(o) + %2(0)

By imposing the same conditions at z=- L, we also obtain

ikplL
vye ° = a¥ (-L) + BE&_(-L)
1 2
ikoplL
-1 = (- a‘l
ikp, ve a#(-L) + 2%,(-L)
where
§;(z) = di‘i(z)/dz , i=1,2 .

The solution of these four equations for T gives

8

[

T =-

>
o

with
‘ i% (-L) + ik P, &2( L)i ’Q'l(-L) + ikoplél(-L)t

! (o) ik pzéz(o) $ *Q (o) £ ik pzél(o) i

(A-9)

(A-10)

(A-150

(A-i2)

(A-13)

It must be emphasized at this point that !‘l(z) and Qz(z) are any pair of

independent solutions to the homogeneous equation. For each different pair

of solutions we obtain a different representation for the reflection coefficient,
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APPENDIX B.
INTEGRAND'S SINGULARITIES

The pole singularities of the integrand are the singularities of the

reflection coefficient, (3.2.4), or the roots of

2T (vi2+u/2+1)T(v/2 -u/2+ 1) r_
"o, VIZ FuiZ + 1/2) T(v/2-u/Zz + 172) 2 “’*“’/2]'“5)

4

. 2 . .
Since the square root (-:l-pl ) doesn't appear in the above equation, a root

of (1B) will correspond to a pole on the first and second sheet of the Riemann
surface.

The poles lying on the integration path, C, (Figs.(1.5) and (1. 6) ) will be
examined first. Consider roots of (1B) in the range Re P, = 0, 0< Impl_f(é)%.
The right-hand side of (1B) is real and, therefore, no roots exist in this
range. In the range O< Re p1 < (-:l)%' Im pl= 0, (1B) can be simplified.

Using the simplified form

: Ti&/2+u/2+i -sinhr|u| +isinmy
2 N
TT(v/2+4/2+1/2) cos mv + coshm|u|

(2-)

one sees the right hand side has an imaginary part when sin(rv)# 0, When
sin(Tv) = 0, the right hand side of the equation is less than zero. Therefore,
no roots exist in the range 0< Re P, < (el)%, Imp1= 0. The final range to
consider is Re p1= 0, (A)%<I.mpl< © , Transform (1B) to

- 2T(1/2 - v/2 - lu|/2) T (v/2 + [Ku]/2 +1)
T Trle, vz ulTan(viz + w72+ 172)

(3B)

where the gamma functions appearing in (3B) are greater than zero since

|u|-v>0 for the range of P, under consideration. As a result, (3B) has no

solutions on the integration path C,
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Since no poles lie on the integration path, the only other residue
contributions lie between the original and deformed path, If T has a small or
moderate value, then for large koany residue contribution will be a rapidly
exponentially decay funciion which can be neglected asymptotically. When

T is large enough, the asymptotic form of the reflection coefficient,

*

R - AT iR
can be used. Since the exponential function has no singularities in the finite
P, plane, the reflection coefficient is analytic there. As a result, we see
no residues ccntribute to the asymptotic reflected field solution. We also

note that since the saddle points lie on the integration path C, no singularities

approach the saddle points as koincreases.
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APPENDIX C.
DECAY REGIONS

The decay regions of the integrand appearing in (3.4.12) are those

regions where Im ?(pl) > 0 with

Hp)) = P,2 +px +ko'l vpp (A)éf)- (1C)
Since the integration path is on two sheets of a four-sheeted Riemann surface,
the decay regions must be found for both of these sheets. The method of
finding the decay regions will be: first, to find the location of the saddle points
and; second, to find the constant level paths through these saddle points, i.e.
paths on which Im ?(pl) = 0, Since the constant level paths separate the decay
and growth regions, once these paths are found, the boundaries of the decay
regions are known.

The location of the saddle point can be found in the maiu part of
the text. On the top sheet of the Riemann surface three saddle points were

3

found. T-wo were on the positive imaginary axis where 0 < Im pl<(A) and
one was on the negative imaginary axis where -(_/‘)é< Im P < 0. On the
second sheet there was only one saddle point. It was located on the negative
imaginary axis where -(!_\)é< Im p1< C.

Two constant level paths pass through each saddle point at right
angles to each other. The imaginary P, axis where |Im P | < (_/‘)% is one of
the constant level paths. The other paths cross the imaginary axis at the
saddle point normal to the axis. Since their functional behavior is complicated,
only approximate path locations can be found. The asymptotes of these paths

as |p1 |~= are found to be

w(pl.(A)%T) A~ im TP > 1. (2C)

et g e
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The expansion is valid on both the upper and lower sheet. On the upper sheet

the four asymptotes are:

Py =!-(x-TTL)/z 1r L quadrant (3G
nd
Py; ° -[(x-nL)/z P, 2" quadrant (4C)
d
P -[(x + TTL)/Z] Pir 3F quadrant (5C)
th ’
Py = -[(x + nL)/z] P, 4 quadrant (6C)

where P, =P, + ipli. An examination of % (pl) for large ko shows that a
constant level path goes through the saddle point which is highest on the imaginary
pl axis and the path is asymptotic to (3C) and (4C). Similarly, a constant lev-1
path goes through the saddle point which is lowest on the imaginary P, axis
and the path is asymptotic to (5C) and (6C). There are no asymptotes on the
second sheet, As a result, the constant level path always remains in the finite
region of the plane.

There is one constant level path on each sheet still to be found. An
investigation of é(pl) along the real P, axis shows that Im é(pl)> 0 on both

2

1
sheets for 0 < Re R < (el) and Im @(pl)<0 on both sheets for (el)z <Re plg 0.

The equation for Im é(pl) where (el)% <|Repl | is

L 3

x+k7 Im v, (4)°T) (7€)

¢

I #p)] = - b, % ¢))
which is valid on both sheets. This equation has one zero for Rep1 > (el)
and another for Rep1< -(el)ﬁ when T small or moderate and kolarge. When
T becomes large (7C) becomes

2 $
Imé(pl)= -(pl -el) x+mp,L.
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This equation has a similar arrangement of zeros, if x > nL. This restriction
does not hinder us since the caustic lies in this region. With the above
information, the trajectory of the remaining constant level paths becomes
clear. The path forms a complete circle crossing the two saddle points, one
on each sheet, at right z.ngles to the imaginary axis and crossing the

P, = + (-:l)% branch cuts at the zeros of (7C). The constant level paths and

decay regions are shown in Figs. (3.3) and (3.4) .
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APPENDIX D.

EXTREMUM OF THE LOCUS
OF TURNING POINTS

The purpose of this appendix is to show the relationship between
the locus of turning points and the caustic formed in a stratified medium.
Let us assume that there exists a stratified medium whose dielectric

constant varies continuously in z between free space and € <1. Rays

1
emitted from a two-dimensional point source located at (o, z’) divide into
transmitted and returning rays. The ray equation for the returning rays
after they have turned is given by
z
v g dT 2
x= - J. - T N , e(zt)=p (D-1)
4

z %t Je(r)-p

where p is the ray parameter, (xt, zt) are the coordinates of turning point
of the ray and (x, z) are the coordinates of ray. The caustic formed by the
rays given in Eq. (D-1) can be obtained by solving the constraint equation,

Zt - d
- [ —PZT_ - (D-2)

S =
dzt l ztj./e('r)-p

simultaneously with Eq. (D-1) . The constraint equation, D-2 , was obtained
by taking the derivative of Eq. (D-1) with respect to z, . We see Eq. (D-2)

will give p or z, in terms of z which, in turn, can be used in Eq. (D-1) to

t
obtain the equation for the caustic. For comparison purposes at a later

time we will evaluate Eq. (D-2) at z=z'. The result is

Zt s
2 4 3 [ =LLs_ 1 -0, (D-3)
dzt 2’

Je(r)-p
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The locus of turning points for the turning rays is given by

x, =- | ol : (D-4)
t v /
z e(1)-p

The extremum of this equation is given by dxt/d z, = 0 . By imposing
this condition on Eq. (D-4), the resulting equation is Eq. (D-3) . This
shows that extremum of the locus of turning points correspond to points

on the caustic which coincide with the z = z’ line.
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APPENDIX E,

UNIFORM ASYMPTOTIC APPROXIMATIONS FOR BESSEL
FUNCTIONS

The uniform asymptotic approximations of the Bessel functions and

(30)

their derivatives are given by Olver™ ', They are :

2/3
23 1/ A (Iv[“g)
. 4|V| E N\ i o
1w = ( Lz ) 172 (E-1)
-W Vv
2/3
(é) Finfs /4|v|2/3E 1/4 Ai(l\’l f)
H. (vw) - 2e \ - ) ——— (E-2)
l-w \Y)
Y 1wl 1/4 A;(|vi2/3ﬁ)
T (vw) ~-- £ (———-2/, ) S (E-3)
v 4|v| "€ v
};é)(\)w) = 4eiZTTi/3 1-“'2 >1/4 AI(I\,|2/3§) (E-4)
. : —_— -4
v w ‘4|V|2/3E VI/Z
with
1 3
i A o v
. . I T ‘i ; at . (E-5)

0 fig

The above transformation, E-5, is a relation between the w-plane
and the €-plane for a particular value of argVv . As can be seen, the
transformation is independent of the magnitude of v. Olver has made
a thorough investigation of the relationship between w and €. He has
shown that by cutting the € plane as shown in Fig. E-1, the asymptotic
approximations given in Eqs.(E-1) - (E-4) are valid over the whole w

plane, cut as shown in Fig, E-2 with |argv| <mn .
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Fig. E-1

The £ Plane

Fig. E-2

The w Plane

Reé

Imw

Rew
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The branch cuts in Fig. E-1 are constant level curves of
exp(-2/3 53/2) whose level izs(';-TT)Z/3 . When these branch cuts are
transformed into the w plane, they fall on top of one another and form
a section of the w plane branch cut. The parameter equations of this
section of the w plane branch cut are

w = sechn 0<t<=

L

g-tanhe = - im+ ¢t e1(3/2---argv)

(E-€)
It is interesting to note that the branch cuts change position as the
argv is varied, however this will not concern us since the branch cuts

will always remain out of the region of ou: interest.

In his paper Olver has obtained the asymptotic approximations to the
Bessel functions for |argv| <m/2 . We will now show that these formulae
are valid when argv=-i1/2 and 0< w<®, To show this fact we will find
the asymptotic approximations of Jv(Vw) in the region |TT - arg\)| < 2.

If the asymptotic approximations from the right and left hand sides of

the v plane yield the same results when evaluated at argv=-1/2, then
Olver's fcrmula is correct at argv=-1/2 . If the two formulae differ by
moue than an exponentially small term along some sector of the Rew axis,

(41)

this willi mean that the particular sector is an anti-Stokes line and an
oscillating terta will be neglected if Olver's original formula is used at
argvs-T/2 . We should not make the faulty conclusion, however that if
the two formulae agree, this sector of the Rew axis is not an anti-Stokes

line,

First, evaluating Olver's asymptotic formula, E-1, atargv=-1/2,

w real and 0<w<!, we have

o
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- 123 -in/3
a4 AT )
\ pa lV|1/3

] -w

inf2
e

Jv(\)w) ~

(E-7)

Next, we want to find an expression for Jv(Vw) in the region |T7 - argv|<’7/2 .
This can be done by making use of the analytic continuation formula given

(42)

by Watson . The result is

I (vw) = J_v(vwei") = e VTl I (Vw) (E-8)

where v=Ve'  and then using the definition of J v(Vw) , we obtain

vVTTi

Jv(vw) = e [cosVﬂ JV(VW) - sinvn Ys (Vw)] . (E-9)

This will give us the asymptctic approximation of Jv(V w) in terms of
functions whose asymptotic approximations are valid in the right half of
the v plane. The asymptotic approximation to YV (Vw) has not been
given as yet but can be obtained from Eq. (E-2) since Yv(z)= Hg)(z) - Hiz)(z) .
We now evaluate Eq. (E-9) atargv=-1/2, 0<w< 1 and neglect exponentially

small terms. The result is

J (vw) = % [Jv (Vw) - in(Vw)] . (E-10)

Substituting the asymptotic approximations given in Eqs.(E-1) and (E-2),
in the right hand side of the above equation, gives us

Z/3J§| e-iﬂ/4 [Ai(IVIZ/3|§|e+1n/3)
2l

4|v]

1
JV(VW) >
l-w

(E-11)
. 2/3 in/3
+ 1B ([vI7]e] e )] .
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Using the connection formula between Airy functions shows us that

the asymptotic approximation for Jv(v w) is the same as Eq. (E-7).

The same procedure can be repeated for argv=-7/2, 1<w <e,
which shows that Olver’'s formula can be extended to argv=-7/2 for
this section of the w plane also. In addition it can be shown that the

1 1y
asymptotic formula for l_(lZ)(\)w) , J'(vw) and éz)(vw) are also valid

v Y v
for argv=-12 , 0<w <=,

L eeon—m—— [ e a4

el o Y T T B
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